
Diploma Thesis

Design and Implementation
of a Metadata Based

Software Browsing Interface
for the openSUSE Build Service

for reaching the degree of

Diplom Informatiker (FH)

Naturwissenschaftlich-Technische Akademie Prof. Dr. Grübler

Staatlich anerkannte Fachhochschule und Berufskollegs

University of Applied Sciences

Isny im Allgäu

written by David Mayr, thesis@davey.de
Matriculation Number: 8119

Prof. Dr. Dietrich Kuhn, kuhn@fh-isny.de
Realized at the SUSE Linux Products GmbH
Supervised by Klaas Freitag, freitag@suse.de

Copyright (c) 2007 David Mayr, Nürnberg

Abstract

One of the biggest advantages of open source is the sheer number of available software

with fast update cycles. This advantage also comes with a cost: Software authors

have to make sure that their software runs on the currently available systems. Users

demand binary versions of the software because compiling takes a long time and is

sometimes difficult to do.

The openSUSE Build Service was designed to provide software authors a means to

easily build packages for multiple Linux distributions and to publish it to a broad

user audience with very little effort.

As the number of software packages in the Build Service grows continuously, get-

ting a quick overview of the most interesting software is nearly impossible. This

makes the process of browsing through all packages exhausting and inefficient for

users.

This thesis describes the design and implementation of an enhancement of the open-

SUSE Build Service: Metadata and statistics based browsing of the Build Service

content. Users can browse the Build Service for the latest added and updated soft-

ware, the most downloaded packages, the most active projects and the highest rated

Build Service projects and packages.

Based on this information, top 10 lists are provided in two forms: first in the web-

client, the primary Build Service user interface for human users and secondary in the

Build Service frontend API for use in other applications.

The system implemented in the context of this thesis has advantages for three groups

of users: The software authors and package maintainers can see how popular and

utilized their software is, the project managers inside SUSE can use the information

to determine how active the maintainers are and which packages are the most de-

manded ones and the end-user of the software can find and browse the content of

the Build Service more convenient.

I

Annotations

This work was created at the SUSE Linux Products GmbH.

(Maxfeldstrasse 5, D-90409 Nürnberg)

Credits

I’d like to thank all the people who supported me while working on this diploma

thesis and my parents, who made that all possible. Special thanks to my tutor

Prof. Dr. Dietrich Kuhn of the nta and Klaas Freitag, my tutor at SUSE. Additional

thanks to all my proofreaders.

Production Environment

This work was written with several computers all running the open source op-

erating system Linux and the graphical user interface KDE. For typesetting

this document I used TEX from Donald E. Knuth and LATEX from Leslie Lam-

port.

Statutory Declaration

Hereby I declare that the present Diploma Thesis was made by myself. Prohibited

means were not used and only the aids specified in the Diploma Thesis were applied.

All parts which are taken over word-to-word or analogous from literature and other

publications are quoted and identified.

David Mayr — July 11, 2007

II

Contents

Abstract I

Annotations II

1 Introduction 1

2 Theoretical Basics 4

2.1 Metadata . 4

2.2 Statistics . 6

2.3 Browsing . 6

3 Working Environment 8

3.1 Company, Team and Project . 8

3.2 Used Tools and Technologies . 11

3.2.1 Hardware . 11

3.2.2 Vim . 11

3.2.3 Subversion . 11

3.2.4 REST . 12

3.2.5 MVC . 13

3.2.6 Ajax . 14

3.2.7 Ruby . 16

3.2.8 Ruby on Rails . 17

3.2.9 MySQL . 21

3.3 Build Service – A Technical Overview 22

3.3.1 Disambiguation . 22

3.3.1.1 Packages . 22

3.3.1.2 Projects . 22

3.3.1.3 Binary Packages . 23

3.3.1.4 Repositories . 23

3.3.2 Architecture . 23

3.3.2.1 Backend . 25

III

3.3.2.2 Frontend / API . 26

3.3.2.3 Clients . 27

3.3.3 ActiveXML . 29

4 Build Service Browsing Interface 30

4.1 Specification . 30

4.1.1 Initial Situation . 30

4.1.2 Motivation . 31

4.1.3 Objectives . 31

4.1.4 Use Case Analyses . 32

4.1.4.1 Latest Added / Updated Packages 33

4.1.4.2 Package and Project Rating 34

4.1.4.3 Most Downloaded Packages 35

4.1.4.4 Most Active Packages / Projects 36

4.1.5 Technical Preconditions . 37

4.2 Design . 38

4.2.1 Newest Packages and Projects 38

4.2.2 Latest Updated Packages and Projects 39

4.2.3 Package and Project Rating 40

4.2.4 Activity Statistics of Packages and Projects 42

4.2.5 Download Statistics of Packages and Projects 43

4.2.5.1 The openSUSE Download Redirector 44

4.2.5.2 Transmission of Download Counters 45

4.3 Implementation . 46

4.3.1 Common Aspects . 46

4.3.1.1 Controllers . 46

4.3.1.2 Database Migrations 47

4.3.1.3 ActiveXML Models 47

4.3.1.4 Web Client Integration 48

4.3.1.5 Read-Only Pages for Projects and Packages 48

4.3.1.6 Separate Page for more Statistics 49

4.3.1.7 XML Validation . 50

4.3.2 Newest Packages and Projects 51

4.3.3 Latest Updated Packages and Projects 53

4.3.4 Package and Project Rating 54

4.3.5 Activity Statistics of Packages and Projects 56

4.3.5.1 Activity of Packages 56

4.3.5.2 Activity of Projects 57

IV

4.3.6 Download Statistics of Packages and Projects 58

4.3.6.1 Generating Download Statistics XML File 58

4.3.6.2 Import of the Download Counters 59

5 Runtime Experience 62

5.1 Performance . 62

5.1.1 XML Stream Parser for Download Statistics Import 62

5.1.2 Caching Frontend Output . 63

5.2 Deployment . 65

5.2.1 Automated Deployment with Capistrano 65

5.2.2 Download Statistics Import via Cronjob 66

5.3 Testing . 67

5.3.1 Rails Testing Framework . 67

5.3.2 Implemented Tests . 68

6 Conclusion and Outlook 71

List of Figures 74

List of Tables 76

List of Listings 77

Appendix 79

A Technologies 79

A.1 XML . 79

A.2 Web Applications . 80

A.3 Web Services . 80

A.4 DBMS . 81

B Listings 82

C Bibliography 113

D Curriculum vitae 117

E Media 118

F Glossary 119

Index 124

V

1 Introduction

Linux is the most propagated computer operating system these days. Huge com-

panies and the municipalities of big cities decide to use Linux for their computers.

Most of the software for Linux is free and open source (see glossary) like Linux

itself, developed by thousands of individuals around the whole world. The ne-

cessity to collect this software and bundle it into packages, to be able to install

it in an easy, convenient and uniform way, is the focus of Linux distributors like

SUSE.

A big advantage of open source software is the huge number of available software

with fast update cycles. This advantage also comes with a cost: Software authors

have to make sure that their software runs on the currently available systems. Users

demand binary versions of the software because compiling takes a long time and is

sometimes difficult to do. But to keep all binaries up to date for the existing systems

is very time consuming. Sometimes it is even impossible when the software author

has no access to a particular architecture or distribution.

Project hosting services like SourceForge [Sou07] provide access to compile farms

which consist of a number of hosts of different architectures that have differ-

ent versions of distributions installed. But building packages with it is still

a manual process. Other systems can create builds for only one distribu-

tion.

The openSUSE Build Service was designed to provide software authors a means

to easily build packages for multiple distributions and have them automatically be

rebuilt if the distribution changes.

Every software author can use the Build Service to build his software for multi-

ple distributions and keep it automatically up to date. Users who like to exper-

iment can create custom tailored package versions. People in search for a spe-

cific package can check the Build Service if it hosts a version that meets their

needs.

1

2

The Build Service features a public programming interface through a REST-based

web service (see section 3.2.4) using XML over HTTP. The interface is designed

for flexibility and easy integration with other tools and frameworks to make Linux

software authors, packagers and users creating and deploying packages efficiently

and joyful.

Problem Description and Purpose

While the Build Service grows and software authors from all over the world add

their software to the openSUSE Build Service, the number of software packages

grows continuously. For getting an overview of the most interesting software in the

Build Service, going through all the software packages, reading and comparing their

description and purpose is nearly impossible. This makes the process of browsing

through all packages hard and inefficient for end-users that are looking for new

software.

Thousands of people already use the Build Service and its products. Most of them

are very experienced: They know what they are looking for. The approach of this

thesis to face the fact that the Build Service needs an easier way to find the most

exciting and useful software in the masses of packages.

This is done by generating statistics of the usage and popularity of software pack-

ages and visualize them, so that Build Service users easily know which packages

other users consider useful and interesting. It does not guarantee that everyone will

consider it interesting. But this gives the users an idea what is worth to take a

closer look at including a much higher chance that it turns out to be better than

just trying out anything randomly.

The enhancements that are necessary to help users browsing the Build Service more

efficient for interesting software, will be specified, designed and implemented in this

thesis.

2

3

Structure of this Document

This thesis is structured in six main chapters.

After the introduction in chapter one, I will explain the most important theoretical

basics needed in order to understand this thesis in chapter two.

In the third chapter I introduce the company, the team and project where this

thesis was written. I also present the tools and main technologies used to ac-

complish this work and explain the architecture of the openSUSE Build Ser-

vice.

The fourth chapter is the main part of this thesis. It includes the specifications of the

work with use case analyses, the design of the planned features the implementation

and integration into the Build Service.

Chapter five points out some aspects of the runtime experience after the imple-

mentation went to the production systems. Stated is also, what was done to face

performance issues, as well as what was done to ensure that regular tests of the code

is established. Furthermore the deployment of how the code is handed over to the

production servers is explained.

The last chapter covers the conclusion of this work. It also gives an outlook of

what could be improved in addition, but was out of the temporal scope of this

thesis.

3

2 Theoretical Basics

In the following chapter the underlying theoretical basics for metadata based soft-

ware browsing are described. The main abstract concepts of this thesis – metadata,

statistics and browsing – will be brought out.

2.1 Metadata

The National Information Standards Organization defines metadata in their booklet

’Understanding metadata’ (see [Nat04]) as follows:

“Metadata is structured information that describes, explains, locates, or otherwise

makes it easier to retrieve, use, or manage an information resource. Metadata is

often called data about data or information about information.

The term metadata is used differently in different communities. Some use it to refer

to machine understandable information, while others use it only for records that

describe electronic resources. In the library environment, metadata is commonly

used for any formal scheme of resource description, applying to any type of object,

digital or non-digital.”

The three main types of metadata are:

• Structural metadata indicates how compound objects are put together, for

example, how pages are ordered to form chapters.

• Descriptive metadata describes a resource for purposes such as discovery and

identification. It can include elements such as title, abstract, author and key-

words.

• Administrative metadata provides information to help manage a resource, such

as when and how it was created, file type and other technical information and

who can access it.

4

2.1. METADATA 5

“Metadata can describe resources at any level of aggregation. It can describe a collec-

tion, a single resource, or a component part of a larger resource. Metadata can also

be used for description at any level of the information model laid out in the IFLA (In-

ternational Federation of Library Associations and Institutions) Functional Require-

ments for Bibliographic Records: work, expression, manifestation, or item. For ex-

ample, a metadata record could describe a report, a particular edition of the report,

or a specific copy of that edition of the report.” [Nat04]

Metadata can be embedded in a digital object or it can be stored separately.

Storing metadata with the object it describes ensures that the metadata will not get

lost, obviates problems of linking between data and metadata and helps to ensure

that the metadata and object will be updated together. The openSUSE Build Service

stores most of its metadata like titles, descriptions and timestamps embedded in the

objects they belong to.

However, it is impossible to embed metadata in some types of objects. Additionally

storing metadata separately can simplify the management of the metadata itself and

facilitate search and retrieval. Especially when the amount of metadata belonging

to an object is rather large as for example rating scores of thousands of users for

a software package, it is better to store the metadata separately from the actual

objects.

The openSUSE Build Service stores different kinds of metadata for its soft-

ware projects. Most of these metadata is descriptive metadata like names, ti-

tles and descriptions. There is also structural metadata stored with each pack-

age and project, because software packages belong to projects and projects

can belong to other projects. Furthermore the Build Service uses administra-

tive metadata to store the creation and update timestamps for packages and

projects.

Another kind of metadata that was not mentioned yet, is generated and col-

lected statistical metadata for the projects the Build Service hosts. The data

collected are ratings and download counters for software. Activity values of soft-

ware packages inside the Build Service could be described as calculated meta-

data.

5

2.2. STATISTICS 6

2.2 Statistics

A good explanation of how statistics are defined can be found at [Wik07e]:

“Statistics is a mathematical science pertaining to the collection, analysis, interpre-

tation or explanation and presentation of data. It is applicable to a wide variety of

academic disciplines, from the physical and social sciences to the humanities. Statis-

tics are also used for making informed decisions – and misused for other reasons –

in all areas of business and government.

Statistical methods can be used to summarize or describe a collection of data. This

is called descriptive statistics. In addition, patterns in the data may be modeled

in a way that accounts for randomness and uncertainty in the observations and

then used to draw inferences about the process or population being studied. This

is called inferential statistics. Both descriptive and inferential statistics comprise

applied statistics. There is also a discipline called mathematical statistics, which is

concerned with the theoretical basis of the subject.”

The objectives of this thesis realize metadata based descriptive statistics for the

openSUSE Build Service. They can help users to make decisions, what software

might be applicable for their special needs.

2.3 Browsing

Generally the term browsing means to have a look-around or to forage for some-

thing.

“Browsing is the electronic equivalent of wandering the library shelves looking for

anything interesting and relevant that catches the eye and following references from

one item, such as a book or journal, to another. [...]

The main attraction of browsing is that it gives the user direct control over the

search process, as opposed to depending on information retrieval technology. It

lets you see what is going on during the search process and allows you to make

choices about what information is being included and what is being rejected. In the

process you learn more about the subject area and what you are really looking for.

Because browsing electronically imitates what people do in libraries it feels like a

more natural process and can be less of a strain than using formal search tactics.”

[Bro07]

6

2.3. BROWSING 7

In computer science browsing means: Using an user interface that allows navigation

of different objects.

In our special case, users have the possibility to browse the contents of the open-

SUSE Build Service. The objects they browse are the software projects and pack-

ages that the openSUSE Build Service hosts and provides for downloading. This

way the users are being helped in finding software that they might like for differ-

ent reasons such as Linux software that is most up to date, best rated or most

popular.

7

3 Working Environment

In this chapter I describe the working environment in which this thesis was written.

I describe the most important tools that were used and give a technical overview of

the openSUSE Build Service.

3.1 Company, Team and Project

In the first section of this chapter I introduce the company, the team and the project

where this thesis was created.

SUSE and Novell

SUSE was founded in late 1992 as a UNIX consulting group, which among

other things regularly released software packages and printed UNIX/Linux man-

uals.

On November 4th 2003, Novell announced it

would acquire SUSE Linux and finalized this

in January 2004. Novells corporate technology

strategist stated that Novell would not alter the

way in which SUSE continues to be developed.

Nowadays SUSE is one of the most known Linux

distributors in and around Europe, providing a

complete and easy to install distribution for home

users, as well as a wide range of Linux based

enterprise products and services.

8

3.1. COMPANY, TEAM AND PROJECT 9

Internal Tools Team

Inside SUSE, the Internal Tools Team is responsible for creating and main-

taining software, that supports the employees of SUSE with their daily busi-

ness. During the writing of this thesis I was member of the Internal Tools

Team.

openSUSE Project

The openSUSE project is a world-

wide community program started

in 2005 sponsored by Novell

that promotes the use of Linux

everywhere. Everyone can get

involved and help making the

distribution even better, or just

use the results of this project.

The openSUSE project home-

page can be found at [Ope07a].

The main result of the open-

SUSE project is the openSUSE

Linux distribution that can be

downloaded for free from [Ope07d].

openSUSE Build Service

The openSUSE Build Service is an open platform for complete distribution de-

velopment, that provides the infrastructure for development of the future open-

SUSE based distributions. It provides software developers with a tool to com-

pile, release and publish their software as packages for the broad user audi-

ence.

Because of the increasingly advancement of the Build Service it is even possible to

create an own Linux distribution. In addition users can build their software for other

Linux distributions, such as Debian [Deb07], Fedora [Fed07], Ubuntu [Ubu07] and

more to come. Open interfaces allow external services (e.g. SourceForge), web pages

9

3.1. COMPANY, TEAM AND PROJECT 10

and custom clients to integrate the Build Service into their systems by the use of its

ressources.

At the moment the basic build functionality is already in place to create software

packages from the source code. Three different clients are available: a web client,

a command line client and a GUI client to interact with the Build Service. With

the clients you can create projects and packages, upload source code files and in-

structions how this source code has to be compiled and some descriptive meta-

data.

A technical overview of the Build Service is given in chapter 3.3 starting on page

22.

10

3.2. USED TOOLS AND TECHNOLOGIES 11

3.2 Used Tools and Technologies

The following section highlights the used tools and technologies to accomplish this

thesis.

3.2.1 Hardware

The workstation I used to develop the programming parts of this thesis is an intel

pentium 4 dual core 3 GHz machine with 1 GB of RAM.

All production systems are hosted in the SUSE server room in Nuremberg. Alto-

gether there are about 86 CPUs running for the Build Service. Most of them compile

and build the software packages. This thesis affected the Build Service frontend and

the webclient server, which run on the same machine: an AMD quad CPU machine

with 4 GB of RAM.

3.2.2 Vim

To edit the source code of the openSUSE Build Service, I decided not to use a

complete IDE like Eclipse [Ecl07] or Emacs [Wik07c]. I preferred using the very

popular and powerful editor vi respectively the improved newer variant vim to

be able to pull all the strings myself. Vim is a highly configurable text editor

built to enable efficient text editing. It is an improved version of the vi editor

distributed with most UNIX systems. See [Wik07g] and [Vim07a] for more informa-

tion.

I additionally used the project plugin from [Vim07b] for vim, that enables efficient

handling of many source files in big projects. The screenshot in figure 3.1 shows the

vim project plugin in action.

3.2.3 Subversion

Subversion - usually abbreviated as SVN - is a revision control system which al-

lows computer software to be developed by a distributed group of programmers.

Subversion manages the concurrent access of multiple users to the same files - and

helps to keep the code consistent even if many programmers changed the same

source code file. To accomplish that, every change a user commits to the SVN

11

3.2. USED TOOLS AND TECHNOLOGIES 12

Figure 3.1: Screenshot of vim with the project plugin

repository gets an automatically increasing revision number, that identifies the

change.

At SUSE SVN is used for almost all software projects. As the complete openSUSE

Build Service source code is opensource, everybody can check it out from the official

Novell Forge SVN server with the following command:

svn co https : // fo rge svn1 . nov e l l . com/svn/ opensuse / trunk

More information about subversion can be found at Wikipedia on [Wik07f] and on

the subversion homepage at [SVN07].

3.2.4 REST

REST is an acronym standing for Representational State Transfer. This is a term

embossed in the Ph. D. dissertation by Roy Fielding [Roy00], where he describes an

architectural style of networked systems.

12

3.2. USED TOOLS AND TECHNOLOGIES 13

“The web consists of resources. A resource is any item of interest. For example, the

fictive website www.car-database.com may define a kaefer-1303 resource. Clients

may access that resource with this URL:

http://www.car-database.com/oldtimer/kaefer-1303

A representation of the resource is returned (e.g. kaefer-1303.html). The repre-

sentation places the client application in a specific state. The result of the client,

traversing a hyperlink in kaefer-1303.html, is another resource which is accessed.

The new representation places the client application into yet another state. Thus,

the client application changes (transfers) the state with each resource representa-

tion.

REST uses standard HTTP operations like GET, PUT, DELETE to retrieve, up-

load and delete resources. It is not a standard, it is just an architectural style. But

REST uses many established standards like: HTTP, URL, XML, HTML, GIF, JPG,

PNG and many more.”

All the Build Service API calls follow the REST addressing style for resources. The

path to access a specific package of the Build Service by the webclient could be e.g.

/package/show/Apache/libapr2 where Apache is the project name and libapr2

the package name.

3.2.5 MVC

MVC is an architectural pattern that describes how to split application code in three

units: model, view and controller.

“Architectural patterns are software patterns that offer well-established solutions to

architectural problems in software engineering. An architectural pattern expresses

a fundamental structural organization schema for a software system. The schema

consists of predefined subsystems and specifies their responsibilities and relations.”

[Arc07]

MVC was introduced by Trygve Reenskaug [Try79] and first implemented with the

Smalltalk [Pet04] programming language.

The model contains the ”smart” domain objects that holds all the busi-

ness logic and knows how to persist themselves to a database. It is

responsible for the data and implements data storage and provision.

The view is responsible for presenting data to users. In most MVC

implementations the view (also called the presentation) is realized as

13

3.2. USED TOOLS AND TECHNOLOGIES 14

simple templates that are primarily responsible for inserting pre-built

data e.g. in-between HTML tags.

The controller handles the incoming requests by manipulating the model

and directing data to the view. [Rai07]

As the architectural overview of the openSUSE Build Service starting on page

23 shows, two of the three Build Service tiers are built with the Ruby on Rails

application framework. Ruby on Rails follows the MVC design pattern very

well and makes design and development of applications easy and clearly laid

out.

3.2.6 Ajax

Ajax is an acronym for Asynchronous Javascript and XML and is a concept for data

transmission between clients and servers, especially in the world wide web between

web browsers and web servers. Ajax uses some well known standard techniques, to

get more interactivity to web sites.

The most important advantage of Ajax is the ability to update parts of a webpage

in the background without reloading the whole page. This allows web applications

to react faster on user input. Additionally unnecessary server load, caused by gen-

erating and transmitting already sent parts of the web page, is avoided. This makes

web applications more responsive and interactive.

In figure 3.2 you can see a standard HTTP request, as for example a simple request

for a web page. The response from the web server replaces the complete page in the

browser.

web server

Client Network/Internet Server

web browser

1 HTTP request

2 HTTP response: HTML

Figure 3.2: Standard HTTP request

Figure 3.3 illustrates an Ajax request, that could happen when a user clicks a button

or link that is implemented as Ajax request. In step one, a JavaScript call to the

browser embedded Ajax engine is made.

14

3.2. USED TOOLS AND TECHNOLOGIES 15

The Ajax engine itself is explained at [Aja07] as follows:

“Instead of loading a webpage, at the start of the session, the browser loads an Ajax

engine [...]. This engine is responsible for both rendering the interface the user sees

and communicating with the server on the user’s behalf. The Ajax engine allows

the user’s interaction with the application to happen asynchronously – independent

of communication with the server.”

While processing step 2, the Ajax engine sends a request to the web server in the

background. The web server answers the request with data usually in the XML

format, but any other format works too (step 3). The browser receives the data and

updates defined parts of the web site (inside the DOM, see glossary) by the use of

JavaScript in step 4 rather than the whole page.

JavaScript call

HTML
user interface ajax engine web server

HTTP request

ServerClient Network/Internet

web browser

1

4

2

3 HTTP response: XML

Figure 3.3: Ajax request

In this thesis I used Ajax for two reasons:

• to make the select box, where the user can choose how many statistic entries

he would like to see at once (see page 49), a bit more responsive and

• at the rating stars, where the user can click to rate packages and projects, to

update the stars without reloading the whole page – see figure 3.4 below.

Figure 3.4: Ajax updates rating stars and message box without reloading the whole
page

15

3.2. USED TOOLS AND TECHNOLOGIES 16

3.2.7 Ruby

Ruby is a pure object oriented, single pass interpreted programming

language. Its syntax was mainly inspired by Perl with Smalltalk-like

object oriented features and also shares some features with Python,

Lisp, Dylan and CLU. It was invented by Yukihiro Matsumoto from

Japan, who started working on it in 1993 and released it to the public in 1995. Ruby

was nearly unknown outside Japan until about the year 2000 because there was only

japanese documentation available. Its main implementation is opensource software

and thus available for free.

In Ruby everything is an object - even strings and numbers. Therefore it is possible

to write things like this:

1 "this is a string object" . l ength

2 # => 23

3 123 . 9 9 . round

4 # => 124

Ruby is designed to be easy readable and quick learnable.

1 numbers = [1 , 2 , 3]

2 numbers . each do | number |
3 puts "This is line #{ number}"

4 end

5 # => This is line 1

6 # => This is line 2

7 # => This is line 3

In Ruby all variables are dynamically typed, so the data types do not need to be

declared. They are not known until execution time. The advantage of dynamic data

typing is more flexibility and less work for the programmer.

Ruby was chosen as the programming language for the Build Service frontend and

webclient, because of several reasons. The most important reason is that the web ap-

plication framework Ruby on Rails (see section 3.2.8) is written in Ruby - the reason

why Ruby on Rails was used is described later on. Furthermore Ruby is good for new

developers to become acquainted with the code that is already present. Ruby also has

other important features: dynamic created methods at runtime, instance methods

and variables that only exist for only one instance of a class, rather than for all class

instances that allow to implement things very efficient.

16

3.2. USED TOOLS AND TECHNOLOGIES 17

3.2.8 Ruby on Rails

Ruby on Rails - often called only Rails or RoR - is a sophisticated

opensource web application framework released in 2004. Its main

scopes are database driven web sites and web services, but it can

also be used without a database.

Rails uses the powerful MVC architecture, explained in chapter 3.2.5

on page 13. This makes web development agile, easy, fast and clear. Figure 3.6 shows

how the Rails components work together.

Besides the don’t repeat yourself (DRY) principle, where Ruby on Rails tries to

help avoiding repeated code fragments and helps re-using code, it follows the con-

vention over configuration precept. This means there are meaningful defaults for

most settings and the developer only needs to specify unconventional aspects of his

application. The first visible convention is the predefined directory structure of a

Rails application, outlined in figure 3.5.

Figure 3.5: Rails dir structure

The main application code resides in the subdirectory app which

is splitted into directories for the models, controllers and views,

following the MVC design pattern explained in section 3.2.5. The

config directory contains settings for the database connection

and other things like activeXML explained in section 3.3.3. The

public directory contains static data like images, stylesheets

and JavaScript code. The test directory contains code and

fixtures for the testing framework explained in section 5.3 on

page 67.

Ruby on Rails was chosen to be the application framework for

the Build Service frontend and webclient, because it leads to

suitable results rather quickly. The very first prototypes of the

Build Service were built in less than two weeks, but nevertheless

the code is very readable and easy to extend due to the well-elaborated concepts of

Ruby on Rails.

17

3.2. USED TOOLS AND TECHNOLOGIES 18

forwarding to
(via FastCGI)

Dispatcher

Model
(ActiveRecord)

Database
(MySQL/Oracle/...)

Controller
(ActionController)

redirects to

loads

Client / Webbrowser

View
(ActionView)

(Apache/Lighttpd,

Webserver

Mongrel/ Webrick)

SQL

Data

CRUD

provides

displays

(HTML/XML/CSS/...)

(via HTTP)
request

Figure 3.6: Ruby on Rails architecture

ActionPack - Controller and View Classes

The Action Pack documentation shows the following explanation what Action Pack

is and what it is good for.

“Action Pack splits the response to a web request into a controller part

(performing the logic) and a view part (rendering a template). This two-

step approach is known as an action, which will normally create, read,

update, or delete (CRUD) some sort of model part before choosing either

to render a template or redirecting to another action.

Action Pack implements these actions as public methods on Action Con-

trollers and uses Action Views to implement the template rendering.

Action Controllers are then responsible for handling all the actions re-

lating to a certain part of an application. This grouping usually consists

of actions for lists and for CRUDs revolving around some model objects.

Action View templates are written using embedded Ruby in tags mixed

with HTML. To avoid cluttering the templates with code, a bunch of

helper classes provide common behavior for forms, dates and strings.

And it is easy to add specific helpers to keep the separation as the ap-

plication evolves.” [Act07b]

18

3.2. USED TOOLS AND TECHNOLOGIES 19

A short example should make it more clear – first the controller class, stored in a file

named app/controllers/message_controller.rb :

1 c l a s s MessageContro l l e r < App l i c a t i onCont r o l l e r

2 de f show

3 @messages = [’message1 ’ , ’message2 ’ , ’message3 ’]

4 end

5 end

Here is the view template that uses the prepared data from the controller, stored in

a file named app/view/message/show.rhtml :

1 <html>

2 <head>

3 <t i t l e >Message overview </ t i t l e >

4 </head>

5 <body>

6 <div>

7 <% @messages . each do | message | %>

8 <p><%= message %></p>

9 <% end %>

10 </div>

11 </body>

So when the client web browser requests the URL http://servername/messages/show

it gets three messages displayed.

ActiveRecord - the Model Class

“Active Record connects business objects and database tables to create a per-

sistable domain model where logic and data are presented in one wrapping.

It‘s an implementation of the object relational mapping (ORM) pattern [...].“

[Rai07]

ORM specifies the mapping of object-oriented data to relational data and vice versa.

It maps Objects with their attributes and relations to table structures and columns

inside databases and the other way round.

With the ActiveRecord class, it is possible to access database entries in a very

easy object oriented way, without the need to worry about how the connection and

updates to the database are made.

Assume you have two database tables like the ones in table 3.1 and table 3.2. Fur-

thermore assume ActiveRecord classes like the ones in listing 3.1.

Then it is possible to do things like in listing 3.2.

19

3.2. USED TOOLS AND TECHNOLOGIES 20

id company name first_name street city
1 LunaBOX Mayr David Rollnerstrasse Nürnberg
2 Minimag Peter Andreas Ottisrieder Strasse Haldenwang
3 NTA Gruebler Gerald Seidenstrasse Isny

Table 3.1: Customers example table

id customer_id date amount
100 1 2006-01-13 09:08:52 12.18
101 1 2006-03-04 11:05:34 31.73
102 2 2006-12-26 13:15:58 23.43
103 2 2007-02-03 23:35:32 12.21
104 3 2007-03-17 17:28:52 25.10

Table 3.2: Bills example table

Listing 3.1: Simple ActiveRecord Model example
1 c l a s s Customer < ActiveRecord : : Base
2 has many : b i l l s
3 end
4
5 c l a s s B i l l < ActiveRecord : : Base
6 be l ong s to : customer
7 end

Listing 3.2: Access ActiveRecord Model Data example
1 lunabox = Customer . f ind by company ’LunaBOX ’

2 lunabox . b i l l s . each do | b i l l |
3 output = b i l l . customer . company + ’ ’ + b i l l . customer . name + ’ -> ’

4 output += b i l l . date + ’ - ’ + b i l l . amount + ’ EUR’

5 puts output
6 end
7 lunabox . s t r e e t = ’Rollnerstrasse ’

8 lunabox . c i t y = ’Nuernberg ’

9 lunabox . save

In line one a local object lunabox is gained from the dynamic method

find_by_company of the Customer model. The method find_by_company is

not defined in the ActiveRecord class, it is created at runtime by ActiveRecord

because of the existing database table field customer . The statement lun-

abox.bills in line two returns an array of bills from the previous customer object.

The lines up to number six iterate through this array of bills and display the following

lines:

LunaBOX Mayr -> Fri Jan 13 09:08:52 0100 2006 - 12.18 EUR

LunaBOX Mayr -> Sat Mar 04 11:05:34 0100 2006 - 31.73 EUR

Line seven through nine change the street and city values of the selected customer

and and saves it back to the database.

20

3.2. USED TOOLS AND TECHNOLOGIES 21

3.2.9 MySQL

MySQL is a wide spread relational opensource database man-

agement system (DBMS, see A.4 in the appendix). The

choice for MySQL as data storage system for the Build Ser-

vice frontend was already made before this thesis started, so its usage was obliga-

tory.

21

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 22

3.3 Build Service – A Technical Overview

The basic idea of the openSUSE Build Service was already introduced in section

3.1 on page 9. In this section I give an overview of the openSUSE Build Service

and how it works technically after clarifying some often used terms in this con-

text.

3.3.1 Disambiguation

To avoid confusion and misunderstandings, I clarify some terms associated with the

openSUSE Build Service.

3.3.1.1 Packages

Packages are the central content of the openSUSE Build Service. A package contains

metadata like a name, title and description. Furthermore there are files belonging

to a package. The most essential file of a package is the source code archive that

should be built in the Build Service.

Depending on the type of binary package that should be built from the respec-

tive source code, there needs to be a special file that describes the requirements

for building a binary software package. In case the binary package (see sec-

tion 3.3.1.3) should be an RPM (see glossary), this special file is called spec

file.

3.3.1.2 Projects

Projects within the openSUSE Build Service are containers for software packages,

binary packages (see below) and other projects. Each project contains some de-

scriptive metadata like a name, title and description and normally group packages

of the same kind. A project can be seen as a workspace used to manage packages

and build configuration. For example there are projects like server:ftp that

contain packages for ftp-servers, games:action which is the home of all action

game packages or the project Apache for packages related to the wide spread web

server Apache. In every project at least one developer / packager is involved who

maintains it.

22

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 23

3.3.1.3 Binary Packages

After the Build Service processed a software package, the result is a binary package

that could be easily installed in a Linux system.

A binary package file contains the compiled binaries, config files, install instruc-

tions and maybe some scripts to get the software installed on a particular Linux

distribution.

For the openSUSE Linux distribution these binary packages are called RPM packages

and have the file name extension ’.rpm’. The only other supported binary package

type in the Build Service is DEB at the moment, primarily used for Debian Linux

and compatible distributions like Ubuntu.

3.3.1.4 Repositories

A repository has two different, but related meanings in the Build Service:

A repository is

• a defined set of binary packages used to build other packages and

• a collection of binary packages as the result of a built project that can be

added as an installation source for a Linux system.

3.3.2 Architecture

The openSUSE Build Service consists of three tiers: the backend, the frontend and

the different clients.

The actual package building is done within the backend. On top of the back-

end a frontend is exposing the build service functionality as a web service (see

A.3 in the appendix) to the public by an API. Several clients using the fron-

tend API provide the user interface to the end-user. A mirror interface pro-

vides the built packages for download, mirroring and interfaces with installation

tools.

This architecture makes the Build Service scale very well. If the load grows higher

than the existing machines can handle, it is easy to add additional computing power

to the Build Service.

23

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 24

Software Installer

Redirector

Download Mirrors

Command
Line

Client

GUI
Client

Build
Host

Build
Host

Build
Host

Build
Host

Build
Host

Build
Host

Job dispatcher

Storage

Scheduler
Backend

Web Client

openSUSE API

Frontend

Database

Clients

Source Server Repository Server

Figure 3.7: Build Service - Architectural Overview

Another big advantage of this architecture is the flexibility for the clients. At

the moment three clients exist: a webclient for users who do not want to in-

stall any software beside their web browser, a command line client to operate the

Build Service without graphical user interface and a graphical client that supports

all the features that a locally running client can offer like fast sorting on client

side.

Additionally the Build Service gains higher security from this three tier architecture.

All commands and data from the clients have to go through the Build Service fron-

tend, which requires users to be authenticated. All XML data is validated by the

frontend, to guarantee that it conforms to the rules of the XML schemas. This way

the backend can be sure it never gets corrupted data.

Another advantage of the three separated tiers is, that the Build Service is

better maintainable. Every tier can be developed independent of the others,

as long as the interfaces are clear and only changed in cooperation with the

24

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 25

other developers. Figure 3.7 shows an overview of the Build Service compo-

nents.

3.3.2.1 Backend

The build backend is responsible for the actual building of packages. It acts on the

source data uploaded through the frontend and creates packages according to the

user-controlled build configuration.

Building packages is a complex process that goes far beyond just compiling the source

code. It includes the creation of a safe environment for the packages to be built.

As basis to be able to compile the packages all required dependencies are fulfilled.

Another task is the decompression of the source code. In case there are patches

available for this specific package, they are applied to the source code files. After

the compilation procedure itself the corresponding files of the package will be picked

up and bundled to binary a RPM or DEB package.

Arc
hit

ec
tu

re

Pac
ka

ge
 fo

rm
at

Dist
rib

ut
ion

RPM

DEB
x86_64

x86_64

i586

i586

Debian
Ubuntu
Debian
Fedora
openSUSE
Fedora
openSUSE

...

on particular system

source code
patches
spec file

openSUSE
Build Service

Storage

Mirrors
and

easy software installation

Figure 3.8: Build Service - overview from source code to end-user

Build processes are distributed over a set of build hosts to allow efficient building

of large amounts of packages in parallel. A scheduler controls the distribution of

the build jobs and of the build results to the storage subsystem, where they are

made available through the mirror interface. The mirror interface allows other file

servers (mirrors), which are spread all over the world to provide the downloadable

25

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 26

files for the users in reasonable speed, to get the files from the Build Service effi-

ciently.

The backend is accessed by a similar REST-based API as the frontend. This API

is not public, though. It is only directly accessible by the frontend and the mirror

interface.

The Build Service backend contains also storage management for package data. The

backend storage holds all data related to packages involved in building the packages.

These are the sources for packages consisting of source code tarballs, patches and

spec files, which act as input for the build process and the results of the build,

i.e. the source and binary RPMs. The storage provides versioning and history for

all uploaded data.

3.3.2.2 Frontend / API

The frontend, that implements the Build Service API, encapsulates the Build Service

functions and provides an interface to them.

The frontend provides access to the package data within the backend through a

REST-based HTTP interface. This allows to do load-balancing, mirroring of data,

using proxies etc. in a simple way. Uploaded data always has to pass the frontend.

Downloads can be redirected to other servers through the mirror interface without

using the backend.

The frontend processes, prepares and routes data and requests from the user to the

backend. The interface is provided as web service in the form of the openSUSE

Build Service API accessible at [Ope07b] and documented at [Ope07c]. The user

interfaces like the web client and the command line client access the Build Service

through this API.

The API is implemented as REST-style web service based on XML resources. It uses

standard HTTP operations like GET, PUT, DELETE to retrieve, upload and delete

resources. These resources can be: source files, package files, meta information,

control- or status information each in form of XML data.

POST operations are used to send commands to the frontend: triggering a rebuild,

creation of templates for specfiles or similar operations which aren’t represented

as data files. By using standard HTTP operations a large collection of existing

programming languages, frameworks and tools can be used to access the API in a

simple way.

26

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 27

Access to the API requires authentication by the user. For this purpose all ac-

cesses have to go through a Novell iChain proxy (see [iCh07]) which checks the

credentials of the user and makes sure that only requests of authenticated users

are forwarded to the frontend accompanied by the required information about the

user.

The frontend also maintains metadata of projects and packages as a set of XML

files. These metadata describes the content and structure of the software to be

built. This includes information like titles, descriptions and classifying tags visible

to the end-user. Furthermore it includes technical data how to build the packages

in a project. Target platform, used package repositories and other information that

needs to be defined for the build environment of the software is also stored with

the technical metadata. The frontend provides direct access to the data mentioned

above and as well as the possibility to query data on basis of names, tags or other

attributes.

For monitoring and controlling the build process, the frontend provides extensive

status information about the state of package building and logs of the individual

build jobs. Status information from build processes of different packages and targets

are aggregated into project status information.

To ensure data consistency and security the frontend imposes some restrictions on

the uploaded data. It checks XML schema validity (see A.1), user permissions and

in the future also will apply user quotas.

The frontend is implemented using the Ruby on Rails framework. For access to

the backend it uses a component called ActiveXML, which maps HTTP requests to

XML resources to Ruby objects transparently.

3.3.2.3 Clients

The public API makes it possible to create specific clients to control the Build Service

and provide a convenient interface to the end-user. Currently there are three clients,

developed by SUSE:

webclient is the primary client of the Build Service, implemented as a Ruby on Rails

web application. For a screenshot of the start page see figure 3.9. The web-

client can be accessed with any browser at [Bui07]. This is the client affected

by the work of this thesis. The webclient uses the ActiveXML framework to

access the Build Service through the openSUSE frontend API. Functionality

27

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 28

to browse and view projects and packages is provided as well as an interface

that manages source files and controls the build process. This includes status

views and a live view of build logs.

osc is the openSUSE command-line tool, which allows using the Build Service with-

out a graphical interface. Osc is written in python and used by many old

hand developers and package maintainers because it makes interaction with

the Build Service faster if you know exactly what you want. It is possible to

check out sources and commit changes back to the server. The command line

client is also able to perform builds of packages on the local system rather

than in the Build Service, e.g. to test the setup on the local architecture be-

fore building it for all available architectures in the Build Service. It retrieves

binary packages from the server required for building because of the need to

resolve the package dependencies for the build process. The retrieved pack-

ages are installed to a local chroot environment in which the build process is

started.

rich client is a graphical Build Service client, written in C++ and with the help

of Qt (see [QtT07]). Its development lacks a bit compared to the other two

clients. Currently viewing of project listing, project metada and some data

about their packages works. For screenshots see [Ric07].

Figure 3.9: Build Service webclient startpage

28

3.3. BUILD SERVICE – A TECHNICAL OVERVIEW 29

3.3.3 ActiveXML

The clients and the Build Service API / frontend communicate via XML (see A.1)

over a REST interface. To ease this communication, especially between the we-

bclient and the frontend, the Build Service team developed a library called Ac-

tiveXML.

The main goal of ActiveXML is to provide a mapping between ruby objects and XML

data similar to the object relational mapping of ActiveRecord as explained on page

19. In addition to the XML-to-object mapping, ActiveXML manages the HTTP

connection between the webclient and the frontend by generating the appropriate

URL for accessing the requested data.

ActiveXML provides an easy way to navigate through an XML document and access

nested data by dynamically defining accessor methods for elements and attributes.

Attribute accessors return the attribute string value, element accessors return an

ActiveXML::Node object for the chosen element. This allows accessor calls to be

chained as shown in the following example.

1 <p r o j e c t name="superkde">

2 <t i t l e >SuperKDE</ t i t l e >

3 <de s c r i p t i on >SuperKDE i s a heav i l y tuned ve r s i on o f KDE.</ de s c r i p t i on >

4 <person r o l e="maintainer" us e r i d="ernie"/>

5 <r e p o s i t o r y name="kde4:factory">

6 <path p r o j e c t="kde4" r e p o s i t o r y="factory"/>

7 <arch>x86 64</arch>

8 <arch>i386 </arch>

9 <arch>ppc</arch>

10 </r epo s i t o ry >

11 </pro j e c t >

1 # assume that the preceding XML file is stored as string in the variable xmldata

2

3 axml object = ActiveXML : : Node . new(xmldata)

4 puts activeXML . name

5 # => "superkde"

6

7 puts activeXML . r epo s i t o r y . name

8 # => "kde4:factory"

9

10 puts activeXML . r epo s i t o r y . path . p r o j e c t

11 # => "kde4"

12

13 activeXML . r epo s i t o r y . each arch do | arch |
14 puts arch

15 end

16 # => "x86_64"

17 # => "i386"

18 # => "ppc"

29

4 Build Service Browsing Interface

This chapter essentially is the main part of this thesis. First I will specify the

use cases that describe what the result of this thesis should be. After that, the

design of the metadata and statistics based software browsing system will be pre-

sented, followed by the implementation section, where I will describe how this was

realized.

4.1 Specification

This section specifies the requirements of the thesis. After describing the ini-

tial situation of the openSUSE Build Service and the motivation why the en-

hancement through this thesis was necessary, I will highlight the objectives of

this thesis. Afterwards use case analyses were made for all of these five objec-

tives.

4.1.1 Initial Situation

When this diploma thesis was started, the Build Service could already be used to

build software packages and had about 250 registered users and 5000 packages in

about 400 projects.

To get an overview of all projects the only possible way was to go through the

list of all 400 project names, which was very uncomfortable. In each project the

user had to click on every single package in order to get the respective package

information.

30

4.1. SPECIFICATION 31

4.1.2 Motivation

The motivation of this thesis was to implement a user-friendly and easy to use

interface for Build Service users to discover, browse and contribute to the most

interesting software projects in a convenient way.

4.1.3 Objectives

Subject of this diploma thesis is to enhance the Build Service with browsing capa-

bilities, so that any interested user or developer can find interesting software in the

Build Service fitting to his needs. Also software project management participates

from this improvement. In the following subsections, the desired objectives that

should be browseable by the users are explained.

Newest Packages and Projects

A list of newly added packages and projects to the Build Service will give a

quick overview of what is new and worth to have a look at. This helps users

to recognize new packages or projects without browsing through the list of all of

them.

Latest Updated Packages and Projects

Especially for users that always want to have the newest packages, it could be

interesting to see what the latest updated packages are in a quick overview. If

they find newer versions of packages they have already installed, they can decide to

update.

Package and Project Rating

Users should get a possibility to rate packages and projects at a scale between one

and five. The rating in general should be as simple as possible. Every package and

project has a row of five stars next to its title, where a user can click the star which

he thinks the package/project merits.

To avoid abuse of the rating system, a single user should not be allowed to rate

the same package or project more than once. A user who rated a Build Service

31

4.1. SPECIFICATION 32

item should be able to change the score afterwards. Only authenticated users are

allowed to rate items. The actual rating score for an object should be displayed by

the clickable stars itself.

Download Statistics of Packages and Projects

It is an interesting and useful information to know which are the most downloaded

packages. Administrators and package maintainers of the Build Service benefit from

download statistics because they can see how strong the demand for their packages

is. Also for the users this data is interesting because they can see what are the

most requested packages. This could support them in getting aware of new and

interesting software. The results are also useful for project planning purposes in

future.

Users should have the possibility to view download counters per project, per package,

per repository or over the whole Build Service.

Because there is a central server where all software download requests are redi-

rected to the geographically next located mirror, download counters can be col-

lected easily. This redirector service is explained in detail in section 4.2.5.1 on page

44.

Activity Statistics of Packages and Projects

Another aspect of interest is the activity of a package or project in general to figure

out which ones are the most active. This way maintainers could be encouraged to

work on their packages and keep them up to date. Activity can be measured by

taking the information on how often the package got updated during a specified

range of time. Therefore it is necessary to conceive an algorithm for calculating a

value for activity.

4.1.4 Use Case Analyses

To give a quick overview of the functional requirements of the planned features,

use case analyses were made for all objectives and their results are shown in the

following section.

32

4.1. SPECIFICATION 33

4.1.4.1 Latest Added / Updated Packages

Because of the fact that the use cases for latest added and latest updated packages

and projects are similar, they are subsumed here in one use case which can be seen

in figure 4.1.

Figure 4.1: Use case analysis for latest added/updated projects/packages

View Added / Updated Timestamp of a Single Object

Every project and package page should display the timestamp when it was added

and when it was updated last, so the user can see how old it is and when it was

touched last in the Build Service.

Browse Latest Added / Updated Objects

The list of packages and projects should be browseable sorted by creation and mod-

ification timestamp. The length of list ought to be adjustable, so users can choose

whether they want to see the top10 or e.g. top1000 of the latest updated pack-

ages.

Add Project / Package

Registered users can add projects and packages to the Build Service. Whenever a

project or package is added, the creation timestamp of it must be set accordingly to

the actual time and date.

33

4.1. SPECIFICATION 34

Modify Project / Package

When a project or package is modified, the modification timestamp needs to be

updated. The design chapter starting on page 38 explains what modifying a package

or project means in detail.

4.1.4.2 Package and Project Rating

Figure 4.2 shows the use cases for rating of Build Service objects - projects and

packages.

Figure 4.2: Use case analysis for rating

Rate Object

Every registered user should be able to rate a project or package. This requires a

login name, a password and the user must be logged in. When he views a package

or project, he simply should be able to click onto a row of five stars to rate the

object.

Change Rating

If the user already rated an object, he should have the possibility to change the

rating afterwards. Therefore it would be useful that the user can see his previous

rating score somewhere nearby the rating stars.

View Rating of a Single Object

The user should see the actual average rating score as well as his own score

at any point. The score should be visible numerical as well as embedded in

34

4.1. SPECIFICATION 35

the rating stars figure. This should be accessible for all users – the authenti-

cated and anonymous users, that have no credentials to log in to the Build Ser-

vice.

Browse Top Rated Objects

All users should be able to see a list of the highest rated objects of the Build Service.

The length of the list should be adjustable so you can see the top 10 or the top 200

objects if one wishes to. Packages and projects with less than three votes should

not show up in this list. This should avoid objects with just one rating of five

stars to lead the top of the list. Such few ratings are considered to be not very

representative.

4.1.4.3 Most Downloaded Packages

Figure 4.3 shows the use cases for the most downloaded statistics in the Build

Service.

Figure 4.3: Use case analysis for download statistics

View Download Counters per Project and Package

If any user - logged in or not - visits a page with information for a project, he should

see the accumulated download counters of all downloadable files that belong to all

packages of this project.

35

4.1. SPECIFICATION 36

It also should be possible to view detailed statistics for all packages of this project and

all the files that have ever been downloaded from this project.

The same requirements apply to packages and their overview pages.

Browse Top Downloaded Projects, Packages, Repositories and Architectures

A very interesting aspect for the package maintainers in the Build Service is: how

often was the own package downloaded? Thus all users should see the down-

load counters sorted by download hits in a listing inside the Build Service web-

client.

Update Statistics from Redirector Database

To have download counters always up to date, this needs to be automated. The

downloads are counted per file by the openSUSE download redirector.

4.1.4.4 Most Active Packages / Projects

This section describes the use case for the most active objects in the openSUSE

Build Service.

Figure 4.4: Use case analysis for activity of Build Service objects

View Activity of Single Object

On a page that is accessible for every user - logged in or not - it should be evident

how active the shown object on that page is.

36

4.1. SPECIFICATION 37

Browse Top Active Objects

Users should be able to browse the list of most active packages and projects. They

ought to have the opportunity to decide how many of the top active objects they

want to see.

Modify Objects

The term activity in this context is defined in section 4.2.4 on page 42. Ac-

tivity of an object rises when it is modified. Modifications of a package in-

volves:

• Changing package metadata like title, description or the upstream URL.

• Adding or changing source code or other files.

• Modifying the list of involved users/maintainers.

• Changing the list of repositories for which this package is built.

The activity of a project is the calculated by the average activity of all the packages

that are in this project.

4.1.5 Technical Preconditions

Because the relevant parts of the Build Service for this thesis - the frontend and

the webclient - are realized with the web application framework Ruby on Rails, it

was implied to use it. This precondition comprehends the use of the more and more

popular object oriented scripting language Ruby.

The same applies to the relational database management system MySQL, which

was already used for data storage in the Build Service frontend as this thesis

started.

For data exchange between the Build Service frontend and the webclient XML was

obligatory.

37

4.2. DESIGN 38

4.2 Design

Given below is the section where the mentioned objectives of this thesis are designed

and elaborated for the implementation that follows afterwards.

4.2.1 Newest Packages and Projects

To inform all users of the Build Service of new projects and packages, the latest

added ones should be listed cumulated. Hence it is necessary to carry along the

timestamp when the project/package was created.

Since all projects and packages are stored in a database, the tables have to be

extended by one field named created_at with the type datetime . This way Rails

sets the timestamp of the creation time to the current date and time when a new

project or package is created fully automatically. This is one of the Rails specific

features that results from the ’convention over configuration’ principle mentioned

earlier.

All that has to be made sure on the frontend side, is to make the timestamps available

to the requesting clients in two forms:

• a single timestamp for one project or package

• a definable number of timestamps for projects or packages as a list

For this two separate actions added_timestamp and latest_added are needed,

which are explained in table 4.1. The field labeled xsd refers to the listing

section in the appendix starting on page 82, where all XML schema files are

listed.

method service API path xsd
GET list of packages and projects latest

added sorted by creation time
/statistics/latest_added/?
limit=<limit>

B.3

GET single timestamp when project or
package was added

/statistics/added_timestamp/
<project>/<package>

B.2

Table 4.1: Frontend interface for latest added projects/packages

For the latest_added function it should also be able to pass a limit parameter,

to have the possibility to limit the count of results.

Figure 4.5 demonstrates the communication steps between the webclient and the

frontend while getting the latest added objects.

38

4.2. DESIGN 39

21

4 render xml output

request latest added objects

map xml to ruby object
render latest added objects

webclient frontend

3

find latest added objects in database

Figure 4.5: Communication between webclient and frontend while getting the list of
latest added objects

In step one the webclient requests the list of latest added objects by accessing

the frontend server path /statistics/latest_added . The frontend asks the

database for an ordered list of the top newest objects in step two and sends this

list in XML format back to the webclient in step three. The webclient maps

the received XML data to ruby objects and renders the HTML page with the

data.

4.2.2 Latest Updated Packages and Projects

To be able to show the latest updated projects and packages, an update timestamp

also needs to be stored for projects and packages. The necessary steps to reach

this are nearly identical to those described in section 4.2.1. The main differences

are:

• the name of the database field name the must be updated_at

• the timestamp must be updated whenever the project/package changes:

– the metadata (name, title, description) is changed

– any file belonging to the package is removed, added or changed

– the list of repositories it should be built for is changed

The frontend Build Service API needs new functions that are mentioned in ta-

ble 4.2. The latest_updated function should also accept a limit parameter,

to be able to limit the count of results. The communication cycle between the

Build Service frontend and the webclient is basically the same as shown in figure

4.5.

39

4.2. DESIGN 40

method service API path xsd
GET list of packages and projects latest

updated sorted by update time
/statistics/latest_updated/?
limit=<limit>

B.5

GET single timestamp when project or
package was updated

/statistics/updated_timestamp
/<project>/<package>

B.4

Table 4.2: Frontend interface for latest updated projects/packages

4.2.3 Package and Project Rating

To have some common feedback of the popularity of projects and packages, all

registered Build Service users should be able to rate them within a range from one

to five.

The user should be able to click on one of the five stars in figure 4.6 to rate a project

or package.

Figure 4.6: Rating stars next to the project header

Table 4.3 shows the API calls, that should be possible to get and set the ratings of

projects and packages.

method service API path xsd
GET list of highest rated projects and

packages sorted by score
/statistics/highest_rated?
limit=<limit>

B.7

GET rating of a specific project or pack-
age

/statistics/rating/
<project>/<package>

B.6

PUT rate a project or package /statistics/rating/
<project>/<package>

B.6

Table 4.3: Frontend interface for highest rated projects/packages

Because the user should be able to rate projects the same way as packages, we need a

rating model that links to both other models - projects and packages - with one iden-

tifier. To achieve that, it is not sufficient to just carry along the referenced object id,

it is also necessary to save the type of the referenced class. In this case we save the ID

of an object as the attribute object_id and the type of an object as object_type

. The object type can be package or project.

Rails has already built in functions for this case: polymorphic associations (see

[Pol07]). Polymorphic associations allow associations from one model to multiple

40

4.2. DESIGN 41

other model classes, or in other words they allow easier programming for n-to-many

relationships.

Figure 4.7 shows the relation between the involved classes. The database ta-

ble schema of the ratings table can be found in the appendix at B.13 on page

92.

object

project package

user

id
login
email
...

rating

object_id
object_type
user_id
score
created_at

id
name
title
description

id
name
title
description

Figure 4.7: Simplified class diagram of involved classes for rating

The sequence diagram for the interaction of the involved parts while changing a

rating can be seen in figure 4.8.

When the user calls a page in the webclient that displays a project or package, it

requests the actual rating from the frontend via a HTTP GET request. The frontend

looks up the average rating score of all ratings for the specified project or package

in the database and returns it as an XML snippet.

In addition to the average rating score, it is also necessary to transmit the

count of ratings and the score the user gave, if he already rated the same

object earlier. This way that information can be displayed in the webclient

too.

The webclient takes the score and displays it next to the header of the page. When

the user clicks on the rating stars to express his assessment of the package or project,

the webclient creates an XML snippet that contains the clicked score and sends it as

HTTP PUT request to the frontend, which in turn saves the score in the database.

After that the frontend gives the new score back to the webclient which displays the

updated average score.

41

4.2. DESIGN 42

Figure 4.8: Sequence diagram for rating

4.2.4 Activity Statistics of Packages and Projects

To calculate the activity of a package, I assume the following:

• After creating a package, its activity is 100%.

• While time passes by without further actions regarding the package, activity

decreases.

• Every time the package is modified, the activity of the package increases by a

certain value, depending on how often the package was already updated.

Therefore we need to save the current value of activity at the moment of updat-

ing a package. I named this value activity index. The actual activity value at

any point later will be calculated ongoing, because the activity decreases perma-

nently.

The formula to calculate the current activity is:

activity = activity index− days since update1.55

10

This formula was ascertained empirical.

This results in a graph like the one visible in figure 4.9. It shows the devolution of

activity exemplary for a package of the Build Service. The x-axis shows the time

42

4.2. DESIGN 43

in days and the y-axis the activity in percent. The green vertical lines visualize the

points in time where the package was modified.

Figure 4.9: Typical gradient of package activity over approx. half a year

In table 4.4 you can see the API calls that are possible to ask the frontend for

the most active objects of the Build Service. The type parameter can be either

packages or projects . This way it can be chosen to get the list of the most

active packages or the list of the most active projects.

method service API path xsd
GET list of most active packages or

projects
/statistics/most_active?
type=<type>&limit=<limit>

B.9

GET activity in % of project or package /statistics/activity/
<project>/<package>

B.8

Table 4.4: Frontend interface for most active projects/packages

4.2.5 Download Statistics of Packages and Projects

The ’most downloaded packages and projects’ of the Build Service is the only one

of the five objectives, that receives its data from another software project outside the

openSUSE Build Service: the openSUSE download redirector.

43

4.2. DESIGN 44

4.2.5.1 The openSUSE Download Redirector

To be able to serve all the software packages to the interested users with reason-

able speed, the openSUSE download area has many download mirrors. Because

we do not want that users have to select the mirrors manually, the openSUSE

download redirector was written. The download redirector takes care of redirecting

download requests transparently to a mirror geographically nearby, that hosts the

requested file. This way, users only need to know one download URL for Build

Service packages: http://software.opensuse.org. As a side effect, the redirec-

tor knows all files, that were requested by people who want to download. This

information is used to feed a database table called redirect stats (for schema see

B.1).

As it is very important for the download redirector to be fast and reliable, the

redirector has its own database where it stores the download statistics. Table 4.5

shows some example entries of this statistics table. Not using the same database

as the Build Service frontend makes the redirector independent from the Build Ser-

vice.

id project package repository arch filename filetype version release count

17 Apache apache2 openSUSE_10.2 i586 apache2 rpm 2.6.5 144.1 432

18 KDE4 kdelibs openSUSE_10.2 i586 kdelibs rpm 4.0.1 21.3 5379

19 ruby FastCGI SUSE_Linux_10.0 x86_64 FastCGI rpm 2.4.0 3.1 143

Table 4.5: openSUSE download redirector statistics table excerpt

The download redirector parses the filenames and paths of all downloaded files and

extracts the following information:

• project name

• package name

• repository name

• architecture

• base part of the filename

• version of the package

• release number of the package

• filename extension

This information is used to feed the database table redirect_stats every time a

file is downloaded and the count field is increased by one. Because package names

44

http://software.opensuse.org

4.2. DESIGN 45

can not be reliably extracted from the file and path name, the initial database

entry with a count of zero is created by the backend, as the backend knows the

full information of every downloadable file. An example path and filename that the

redirector sees could look like figure 4.10.

http://software.opensuse.org/download/Apache/openSUSE_10.2/i586/apache2−2.2.1−35.1.i586.rpm

ho
st

na
m

e

re
po

si
to

ry

re
le

as
e

ar
ch

ite
ct

ur
e

ve
rs

io
n

pr
oj

ec
t

ba
se

pa
th

ar
ch

ite
ct

ur
e

ba
se

na
m

e

ex
te

ns
io

n

Figure 4.10: Download URL parts as parsed by the statistics module of the redirector

4.2.5.2 Transmission of Download Counters

To transfer the redirector counters to the Build Service, I decided to use XML.

This decision was made, because it is the standard data exchange format in the

whole Build Service and is predestined for this task. To read out the data from

the redirector database, a small ruby script that writes a temporary XML file

would be sufficient for the first step. The second step would be to send this file

to the Build Service via an HTTP PUT request to the frontend server, what could

be done by another ruby script or by the use of the external command line tool

curl.

API Calls

Table 4.6 shows the API calls of the frontend to be able to request download counters

in different ways and to update the counters. The group_by parameter specifies,

how the results should be grouped and summarized. Possible values for group_by

are: project, package, repo or arch. As with all objectives before, the limit parameter

can be used to limit the count of results.

method service API path xsd
GET download counters for top down-

loaded files
/statistics/download_counter
?limit=<limit>

B.10

GET summarized download counters for
top downloaded projects, pack-
ages, repositories or architectures

/statistics/download_counter
?group_by=<group_by>
&limit=<limit>

B.11

PUT send download statistics, to update
the download counter database

/statistics/redirect_stats B.12

Table 4.6: Frontend interface for most downloaded projects/packages

45

4.3. IMPLEMENTATION 46

4.3 Implementation

In this section I highlight what was had to be done to gain the objectives pointed

out in section 4.1.3 starting on page 31.

Figure 4.11: Screenshot of the statistics overview in the webclient

4.3.1 Common Aspects

First I explain some aspects of the implementation, that are common to all of the

five objectives.

4.3.1.1 Controllers

To have all the Build Service statistics in one place, I decided to create a separate

controller in the frontend part and in the webclient part with the meaningful name

statistics. This way we get the address http://api.opensuse.org/statistics

as base URL for all API/frontend functions and the webclient base address http:

//build.opensuse.org/statistics.

46

http://api.opensuse.org/statistics
http://build.opensuse.org/statistics
http://build.opensuse.org/statistics

4.3. IMPLEMENTATION 47

4.3.1.2 Database Migrations

For changing the database structure, Rails provides a special mechanism called mi-

grations. With migrations Rails manages different versions of database structures

and makes it easy to change between them.

“Migrations can manage the evolution of a schema used by several physical

databases. It is a solution to the common problem of adding a field to make a

new feature work in a local database, but being unsure of how to push that change

to other developers and to the production server. With migrations, you can describe

the transformations in self-contained classes that can be checked into version con-

trol systems and executed against another database that might be one, two, or five

versions behind.” [Mig07a]

This includes many benefits:

• while working in a team of developers: if one person makes a schema change,

the other developers just need to update by running rake migrate

• on production servers: run rake migrate while rolling out a new application

release, to bring the database up to date as well.

• while using multiple machines: if developing on both a desktop and a laptop, or

in more than one location, migrations can help you keep them all synchronised.

Furthermore Rails uses migrations to abstract the database structure definitions

from the underlying DBMS implementation. More on the Rails migration concept

can be found at [Mig07a] and [Mig07b].

Migration files are located in a directory called db/migrate/ and have a fixed

naming convention: they start with a triple-digit number (the version number of the

database structure), followed by an underscore and some descriptive words joined

by underscore signs, e.g. 010_add_download_counter.rb . To apply a migration

to the database, it is sufficient to call rake migrate in the Rails installation base

directory.

4.3.1.3 ActiveXML Models

As mentioned earlier, communication between the frontend and the webclient is done

via XML. To ease this, the ActiveXML class, which is explained on page 29, was

written by the Build Service team. All ActiveXML models have to be configured

47

4.3. IMPLEMENTATION 48

for the webclient, so that the webclient knows how to communicate with the Build

Service frontend and where to get or write model data. For the current ActiveXML

implementation, this is done in the configuration file webclient/config/environ-

ment.rb and looks like listing B.14 on page 92 in the appendix, where only the

essential excerpt is shown.

4.3.1.4 Web Client Integration

As the integration of the statistics in the webclient is similar for most of the ob-

jectives. This following explanation of the procedure is capable for all five objec-

tives. Starting at section 4.3.2, I basically address only the Build Service frontend

scopes.

At first I created new ActiveXML models in the webclient subdirectory app/mod-

els. This might be a file named most_active.rb for the model of the most active

objects of the Build Service with the following content:

1 c l a s s MostActive < ActiveXML : : Base

2 end

This model knows where to get data from the Build Service frontend because of

the ActiveXML configuration mentioned just before. In this case the important

configuration lines could look like this:

1 map . connect : mostact ive , ’rest :/// statistics/most_active ?:type&:limit ’ ,

2 : s p e c i f i c => ’rest :/// statistics/activity /: project /: package ’

This tells the webclient: ’If you need data from the MostActive model, ask the

frontend server at the path /statistics/most_active and append the parame-

ters’. The webclient can then use the new model in a way like that: @objects =

MostActive.find(:limit => 10, :type => packages) to get to 10 top active

packages. The result is received as XML data and wrapped in a ActiveXML::Node

object. Then the webclient forwards the data to the view part which renders the

list to be viewable in the web browser.

4.3.1.5 Read-Only Pages for Projects and Packages

At the moment, only registered users can see more than the start page of the Build

Service. To browse packages and projects, users need to log in. This needs to be

changed in the future and is already work in progress, but is a long-term subject. In

the meantime, I decided to add read only pages inside the Build Service, to provide

48

4.3. IMPLEMENTATION 49

informative pages about projects and packages that do not require to be logged in.

This pages do not display any buttons or links that can change anything of the

Build Service. They are just informative, show the package/project title, name,

description, download URL and all five types of statistics for the respective package

or project.

Figure 4.12: Package statistics on a separate read only page

The present pages for projects and packages can be retrieved at the webclient path

/packages/show/?project=<projectname>&package=<packagename> and /pro-

jects/show/?project=<projectname> . For the read only pages just mentioned, I

use the methodname view instead of show.

4.3.1.6 Separate Page for more Statistics

To be able to display more than just the few entries per objective as shown in figure

4.11, I built in a link to display more items at once. Figure 4.13 shows that for the

most active projects and packages. The right side in the red box shows the clipping of

a new page, that gets loaded when the more... link is clicked. There you can choose

in the upper area, how many items should be displayed.

The small form that realizes the selection is implemented in two ways:

49

4.3. IMPLEMENTATION 50

Figure 4.13: All statistics link to a view, where more items can be displayed

1. as standard HTML form element that sends the selection via an HTTP GET

request to the server and receives a complete new page with the new informa-

tion and

2. additionally as Ajax request, that reloads only the relevant part of the page

(the list with projects and packages) in the background as explained earlier on

page 14 where I introduced the Ajax technology.

The code for that is shared between all statistics pages by the use of a helper which

can be seen at B.19 in the appendix. Helper functions can be shared between differ-

ent views, so there is nothing unnecessarily duplicated.

4.3.1.7 XML Validation

To be sure the Build Service frontend gets correct data, all sent XML files that

are received by the frontend are validated (see appendix A.1) against the appro-

priate XML schema. This is done by the external tool xmllint with the XML

schema files that can be found in the appendix starting on page 82 up to page

90.

50

4.3. IMPLEMENTATION 51

4.3.2 Newest Packages and Projects

As already stated in the design chapter 4.2.1, there is not much more to do than to

extend the projects and packages database table by one field named created_at .

As soon as this field exists, the Ruby on Rails magic fills it automatically with the ac-

tual timestamp while creating a new project or package.

The database migration file for adding the new field to the project and package table

looks like the following listing:

Listing 4.1: Migration for adding created at timestamps
1 c l a s s AddCreateAndModifiedTimeStamps < ActiveRecord : : Migrat ion

2

3 de f s e l f . up

4 add column : p ro j e c t s , : c r ea ted at , : datet ime

5 add column : packages , : c r ea ted at , : datet ime

6 end

7

8 de f s e l f . down

9 remove column : p ro j e c t s , : c r e a t ed a t

10 remove column : packages , : c r e a t ed a t

11 end

12

13 end

The frontend methods to send single timestamps and a list of timestamps are called

added_timestamp and latest_added . They are imprinted in the listings section

B.16 and B.15 starting at page 92.

For the view part of the implementation in the frontend I used RXML views, because

they are the simplest way to return XML data with Rails. RXML views use the

Rails built in Builder to render XML data.

“Builder is a freestanding library that lets express structured text, such as XML,

in code. A Builder template, which is in Rails a file with an .rxml ex-

tension, contains Ruby code that uses the Builder library to generate XML.”

[Dav05]

Here is a simple Builder template that outputs the timestamp when a package was

added to the Build Service in XML:

1 xml . i n s t r u c t !

2 xml . l a t e s t added do

3 xml . package (

4 : name => @package . name ,

5 : p r o j e c t => @package . p r o j e c t . name ,

6 : c r ea ted => @package . c r e a t ed a t . xmlschema

7)

8 end

51

4.3. IMPLEMENTATION 52

This leads to the following XML output:

1 <l a t e s t added >

2 <package p r o j e c t="home:dmayr" name="x11vnc" c rea ted="2005 -01 -01 T00 :00:02"/>

3 </la t e s t added >

Notice how Builder has taken the names of methods and converted them to XML

tags. When using xml.latest_added , it created a tag called <latest_added>

whose subelements were set from the subsequent hash. [Dav05]

The created RXML views for this thesis are listed in section B.17 and B.18 in the

appendix.

The following two listings show examples for the returned XML data from the

frontend of a single project (listing 4.2) and for the top newest objects (listing

4.3).

Listing 4.2: XML data for a single package timestamp
1 <?xml ve r s i on="1.0" encoding="UTF -8"?>

2 <l a t e s t added>

3 <p r o j e c t name="home:dmayr" c rea ted="2005 -01 -01 T00:00:01 +01 :00"/>

4 </ l a t e s t added>

Listing 4.3: XML data for latest added objects
1 <?xml ve r s i on="1.0" encoding="UTF -8"?>

2 <l a t e s t added>

3 <p r o j e c t name="testproject" c rea ted="2007 -03 -26 T15:57:49 +02 :00"/>

4 <package name="libgpod" p r o j e c t="dmayr" c rea ted="2007 -03 -11 T19:12:14 +01 :00"/>

5 <package name="apache2" p r o j e c t="Apache" c rea ted="2007 -03 -09 T23:08:58 +01 :00"/>

6 <p r o j e c t name="home:tlitsch" c rea ted="2007 -03 -09 T19:20:05 +01 :00"/>

7 <package name="x11 -input" p r o j e c t="X11" c rea ted="2007 -03 -09 T17:39:14 +01 :00"/>

8 </ l a t e s t added>

The generic implementation process to integrate the functions in the webclient

is already described in section 4.3.1.4. For this one objective I point it out any-

way.

On the webclient side, a new model latestadded needs to be defined, which can

be done with just two lines of code, as listing 4.4 shows:

Listing 4.4: Webclient model for the latest added objects
1 c l a s s LatestAdded < ActiveXML : : Base

2 end

This model knows how to get data from the frontend because of the ActiveXML

configuration mentioned in 4.3.1.3, which is imprinted in the listing section on page

92.

52

4.3. IMPLEMENTATION 53

After that, the webclient can call LatestAdded.find(:limit => 10) to get

an array of the 10 newest objects sorted by creation time. The webclient statistics

controller calls this and forwards the data to the view part of the webclient, which

renders the list of latest added packages and projects as HTML and delivers it to

the client web browser.

To get a specific timestamp for just one package or project, the webclient calls Lat-

estAdded.find(:specific, :project => @project, :package => @package).pack-

age.created and gets XML data as shown in listing 4.2.

Figure 4.14 shows what the webclient displays in the detailed view of the top newest

projects and packages. The tooltip displayed when the mouse cursor remains some

seconds over an entry shows the period of time that passed since the object was

added to the Build Service.

Figure 4.14: Screenshot of latest added projects/packages in webclient

4.3.3 Latest Updated Packages and Projects

Rails has also another automatism for timestamps: if a database field of an Ac-

tiveRecord model is named updated_at , Rails updates the timestamp every time

a model instance is updated and saved.

The database migration file looks nearly the same as the migration of the previous

section (see listing 4.1) except of the field name, that needs to be updated_at

instead of created_at .

In addition to the automatic timestamp updates, the timestamp of packages needs to

be updated when files are added and the timestamp of projects needs to be updated

when the list of build repositories is changed. This can be gained by just calling

53

4.3. IMPLEMENTATION 54

the save method on the appropriate model object after adding files to a package

or build repositories to a project.

The XML data of the latest updated objects is analogous to the latest added ob-

jects described in the section before and therefore not listed here anymore. Figure

4.15 shows the detailed view of the latest updated projects and packages in the

webclient.

Figure 4.15: Screenshot of latest updated projects/packages in webclient

4.3.4 Package and Project Rating

For the rating objective is something more to do than for the previous objectives.

Data for this one is not generated automatically, but must be gathered from the

Build Service users.

To be able to receive ratings from the users in the frontend, a method needs to be

created that accepts XML data according to the XML schema B.6 via an HTTP

PUT request. To avoid making it more complicated than necessary, I decided to

use the same method that sends single ratings of projects or packages, which is just

called rating . Inside this method it is checked, whether it’s an GET or PUT

request and branched accordingly. For the source code, see listing B.21 on page 96.

The PUT part first checks if the user already rated the object in question and if he

has, the rating is just updated. If the user did not yet rate the object, a new rating

entry is created and saved.

The method highest_rated , which sends rating scores from the frontend to the

client can also be seen in listing B.21. The data the frontend returns for a single

rating score is shown in listing 4.5 below. The XML data for a list of highest rated

objects is shown in listing 4.6.

54

4.3. IMPLEMENTATION 55

Listing 4.5: XML data for a single package rating score
1 <r a t i ng p r o j e c t="home:dmayr" package="x11vnc" count="251" u s e r s c o r e="4">2 .3</

ra t i ng>

Listing 4.6: XML data for the highest rated objects
1 <?xml ve r s i on="1.0" encoding="UTF -8"?>

2 <h i gh e s t r a t ed>

3 <p r o j e c t s co r e="4.7592" name="KDE:KDE3" count="41"/>

4 <p r o j e c t s co r e="4.6345" name="openSUSE:Tools" count="15"/>

5 <package s co r e="4.4970" p r o j e c t="openSUSE:Tools" name="osc" count="81"/>

6 <p r o j e c t s co r e="4.0294" name="FATE" count="53"/>

7 </ h i gh e s t r a t ed>

Figure 4.16: Screenshot of highest rated projects/packages in webclient

The model part implements the polymorphic association addressed in the design

chapter mentioned earlier at page 40. In this case, the model classes look like the

following listing:

Listing 4.7: Models for rating
1 c l a s s Package < ActiveRecord : : Base

2 has many : ra t ing s , : as => : ob ject , : dependent => : de s t roy

3 end

4

5 c l a s s Pro j e c t < ActiveRecord : : Base

6 has many : ra t ing s , : as => : ob ject , : dependent => : de s t roy

7 end

8

9 c l a s s Rating < ActiveRecord : : Base

10 be l ong s to : p ro j e c t s , : c lass name => "Project" , : f o r e i gn k ey => "object_id"

11 be l ong s to : packages , : c lass name => "Package" , : f o r e i gn k ey => "object_id"

12 end

An example for the polymorphic associations may look like the relations example in

figure 4.17. Figure 4.16 shows the result of the highest rated packages and projects

in the webclient.

55

4.3. IMPLEMENTATION 56

id sc
or

e

ob
je

ct
_i

d

us
er

_i
d

object_type

packages

1 3 1 Package 4

ratings

4 5 2 Package 2

2 5 2 Project 2
3 4 1 Package 1

projects

1 Apache
2 KDE3
3 SaX2

1 apache2
2 kdebase
3 tidy

1 Admin
2 dmayr
3 tscholz
4 freitag

users

Figure 4.17: Simplified example of rating table relations

4.3.5 Activity Statistics of Packages and Projects

For the users it is very interesting, how active projects and packages are. If a

project is no more active, it will not be developed any more further and will not get

enhanced. This might be a reason for many users to not install inactive software.

By calculating and displaying activity of projects and packages, maintainers and

developers could get encouraged to work on their packages and keep them up to

date.

4.3.5.1 Activity of Packages

I already explained the activity algorithm in the design chapter 4.2.4 on page 42.

After some tests with real data, it turned out that implementing this algorithm in

ruby is much too slow. The cause for this is, that if we want a listing of the most

active packages, we always need to recalculate the activity of all packages – which

can be a huge number – in order to sort them. A much faster approach is to let the

MySQL database calculate the activity values.

Because the algorithm is needed at several places, I wrote a small method for the

packages model class, that just returns a SQL snippet with the activity algorithm

as string.

1 de f a c t i v i t y a l g o r i t hm

2 # the algorithm (sql snippet) we use for calculating activity of packages

3 ’@activity :=(’ +

4 ’pac.activity_index - POWER(’ +

5 ’TIME_TO_SEC(TIMEDIFF(NOW(), pac.updated_at))/86400 , 1.55’ +

6 ’) / 10’ +

7 ’)’

8 end

56

4.3. IMPLEMENTATION 57

This snippet could be inserted at every place where it is needed:

1 @packages = Package . f i nd : a l l ,

2 : from => ’packages pac , projects pro’ ,

3 : c ond i t i on s => ’pac.project_id = pro.id’ ,

4 : s e l e c t => ’pac.*, pro.name AS project_name ,’ +

5 "(#{Package.activity_algorithm}) AS act_tmp ," +

6 ’IF(@activity <0, 0, @activity) AS activity_value ’

The activity index attribute of each package needs to be updated every time the

package itself is updated. This is done in the package model by the following

method:

1 de f update timestamp

2 # the value we add to the activity , when the object gets updated

3 ac t i v i ty addon = 10

4 ac t i v i ty addon += Math . l og (s e l f . update counter) i f update counter > 0

5 new ac t i v i t y = a c t i v i t y + ac t i v i ty addon

6 new ac t i v i t y = 100 i f n ew ac t i v i t y > 100

7

8 s e l f . a c t i v i t y i n d e x = new ac t i v i t y

9 s e l f . c r e a t ed a t | |= Time . now

10 s e l f . updated at = Time . now

11 s e l f . update counter += 1

12 end

4.3.5.2 Activity of Projects

Activity of projects is generated by calculating the average activity of all con-

tained packages. This is done in the project model, see the following list-

ing:

1 de f a c t i v i t y

2 # get all packages including activity values

3 @packages = Package . f i nd : a l l ,

4 : from => ’packages pac , projects pro’ ,

5 : c ond i t i on s => "pac.project_id = pro.id AND pro.id = #{self.id}" ,

6 : s e l e c t => ’pro.*,’ +

7 "(#{ DbPackage.activity_algorithm}) AS act_tmp ," +

8 ’IF(@activity <0, 0, @activity) AS activity_value ’

9

10 # count packages and sum up activity values

11 p r o j e c t = { : count => 0 , : sum => 0 }
12 @packages . each do | package |
13 p r o j e c t [: count] += 1

14 p r o j e c t [: sum] += package . a c t i v i t y v a l u e . t o f

15 end

16

17 # calculate and return average activity

18 re turn p r o j e c t [: sum] / p r o j e c t [: count]

19 end

57

4.3. IMPLEMENTATION 58

The integration into the weblient was already described on page 48.

Figure 4.18 shows the list of most active projects and packages in the web-

client.

Figure 4.18: Screenshot of most active projects/packages in webclient

4.3.6 Download Statistics of Packages and Projects

The download statistics objective is an exceptional case: it gets its data from out-

side the Build Service, from the openSUSE download redirector that was already

introduced in section 4.2.5.1 on page 44.

Because the redirector uses its own database, the statistics must be transferred

somehow to the Build Service frontend. As data transfer format it was chosen to

use XML because it is easy parseable and already used all over the Build Service.

To be able to validate the XML file a XSD schema was written for the statistics file,

see listing B.12 on page 90.

4.3.6.1 Generating Download Statistics XML File

To generate the XML file with all the download counters, I decided to create an ex-

ternal ruby script. This script uses the ActiveRecord class mentioned on page 19 to

access the redirector database and the XMLBuilder to create the XML output. The

listing of the script is imprinted on page 97 and is regularly called by the cron dae-

mon, which is explained more detailed in chapter 5.2.2.

58

4.3. IMPLEMENTATION 59

openSUSE
Build ServiceA

P
I

Redirector
DB

Build Service
DB

openSUSE
Download
Redirector

Statistics
Import
Script

Statistics Module

create
XML

send via
HTTP

Figure 4.19: Separate databases for the download redirector and the Build Service

As stated earlier in section 4.3.1.7, the frontend validates the generated XML

data with a schema file. This schema file can be seen in listings section

B.12.

Figure 4.19 shows the way of the download counters from the openSUSE redirector

database to the Build Service.

4.3.6.2 Import of the Download Counters

As the Build Service frontend has an open API via HTTP(s), it was an easy decision

to send the statistics XML file via HTTP to the frontend. To achieve this, a little

command line tool called curl was used. The command line to send the XML file

to the frontend looks like the following:

cu r l −X PUT −u user : pass http :// api . opensuse . org / s t a t i s t i c s / r e d i r e c t s t a t s

−T s t a t i s t i c s . xml

The redirector collects only raw strings for the project, package, repository and

architecture names in its database. But in the frontend it would be desirable to

have them as IDs, referencing the respective objects in the other tables as foreign

keys. Therefore it is necessary to resolve the ID of a name coming from the XML file

and write it into the frontend database instead of the raw name. Figure 4.22 shows

the flow chart of the procedure that achieves that.

The resulting table entries of the example redirector statistics mentioned before

could look like the lines in table 4.7.

The two figures 4.20 and 4.21 show the webclient pages that display the most down-

loaded Build Service items. Figure 4.20 displays the top downloaded projects, pack-

59

4.3. IMPLEMENTATION 60

id project_id package_id repo_id arch_id filename filetype version release count

413 321 3124 32 4 apache2 rpm 2.6.5 144.1 432

927 911 9473 32 4 kdelibs rpm 4.0.1 21.3 5379

229 249 5113 12 6 FastCGI rpm 2.4.0 3.1 143

Table 4.7: Frontend download statistics table excerpt

Figure 4.20: Screenshot of most downloaded projects/packages in webclient

ages, repositories and architectures. Mouse-over tooltips show the exact counter

value and the count of files.

Figure 4.21 appears, when the user clicks any entry of the previous screenshot. It

displays download details where you can see all the contained files with filename,

version, release and so on. This detailed list can be filtered by project, package,

repository and architecture or any combination of it. In this view, any of the listed

items can be clicked to filter by it. This is shown by a small filter icon in the

header of the table. This icon can be used to remove the filter of a certain column

again.

Figure 4.21: Screenshot of detailed download statistics with active filter

Figure 4.22 shows the program flow chart, how the download counters from the open-

SUSE download redirector are imported by the frontend.

60

4.3. IMPLEMENTATION 61

Figure 4.22: Program flow chart of the download statistics import in the frontend

61

5 Runtime Experience

In this chapter some experiences that occurred during runtime of the implemented

statistic features are pointed out.

5.1 Performance

While developing the statistic features I never had the same amount of data in

the database as in production systems, where the quantity of data grows every

day. Because of that it turned out that some functions did not perform satisfactory

enough with real world data masses. This make improvements necessary that I

describe in this section.

5.1.1 XML Stream Parser for Download Statistics Import

The first version of the importer script for download statistics did not perform very

well, it was way too slow and consumed oodles of memory. For importing an XML

file with e.g. 20 MB, the pristine method took about 800 MB of RAM. The reason

for this waste was, that it read in the entire XML file and built an ActiveXML

object for every single entry, whereof about 200,000 were in the XML file at that

time.

The solution for this problem was to implement the XML import in the Build

Service frontend as an XML stream parser. One possibility would have been

to use a SAX (see [Wik07d]) parser. Rails provides a light SAX-like parser

implementation that is quite fast and memory economical called StreamLis-

tener.

“SAX parsers scan the document once and invoke event methods to as they encounter

each atomic XML components and each boundary of a large XML component [...].

Consequently, documents that require simple processing can be of unlimited size, be-

62

5.1. PERFORMANCE 63

cause memory resources depend only on the activity needed to translate one stream

of input data to a second stream of output data.” [Str07]

For this, the class StreamHandler (see listing B.24) was written. It includes the

Rails built in StreamListener and implements the methods tag_start and text,

which are called every time the parser reads in an XML tag or the content of an

XML tag.

The class StreamHandler is used in the statistics controller by the redi-

rect_stats method, where the data is sent as PUT request to the frontend in

XML format, as follows:

1 data = reques t . raw post

2 streamhandler = StreamHandler . new

3 REXML: : Document . parse s t ream (data , streamhandler)

This improvement made the import process using only about 30 MB of RAM mem-

ory independent of the XML data size.

5.1.2 Caching Frontend Output

Because it is not necessary to have most of the statistics in real time, a performance

speedup could be achieved by caching the frontend XML output for a period of time

after generation. The Rails framework provides three different methods for caching

output:

page caching Page caching is an caching-approach where the entire action output

is stored as an HTML file that the web server can serve without going through

the Action Pack. This can be as much as 100 times faster than going through

the process of dynamically generating the content. Unfortunately, this speed-

up is only available to stateless pages where all visitors are treated the same.

action caching Action caching is similar to page caching by the fact that the entire

output of the response is cached, but unlike page caching, every request still

goes through the Action Pack. The key benefit of this is that filters run before

the cache is served. This allows authentication and other restrictions to decide

whether someone is allowed to see the cache or not.

fragment caching Fragment caching is used for caching various blocks within tem-

plates without caching the entire action as a whole. This is useful when certain

elements of an action change frequently or if they depend on complicated state

while other parts rarely change or can be shared amongst multiple parties.

63

5.1. PERFORMANCE 64

To use Rails caching generally, it needs to be turned on first.

config/environment.rb

Base . per form cach ing = true

However, the built in caching techniques have some disadvantages:

Parameters of requests are ignored In the original Rails caching implementation

GET parameters of requests are just ignored. Rails treated for example the

request /statistics/most_active?type=packages&limit=1000 the same

way as the request /statistics/most_active?type=projects&limit=5 .

As we are using parameters, e.g. for limiting the number of or the type of

request, parameters are essentially.

Cached items must be manually expired To invalidate a cached page, action or

fragment, Rails needs to be told when it should expire the particular cached

item and rebuild it new.

Caching did not work correctly Somehow the original Rails caching did not work

correctly all time. Maybe there exist implementation errors that are fixed now,

but during the preparation of this writing I had some not comprehensible errors

that were very annoying.

After some research it turned out that there already exists a Rails caching sys-

tem that fits all our needs, see [Act07a]. It pays attention to parameters of the

request and expires cached items automatically after a predetermined period of

time.

To use it, one first have to copy the file action_cache.rb into the lib/ directory

inside the Rails directory structure. Then it needs to be loaded in config/envi-

ronment.rb with the command as follows:

config/environment.rb

r e qu i r e ’action_cache ’

Afterwards it needs to be declared, which actions output should be cached:

app/controllers/statistics_controller.rb

ca che s a c t i on : h i ghe s t r a t ed , : most act ive , : l a t e s t added , : l a t e s t updated ,

: download counter

Last thing to do here is to set the time to live for each affected action inside the

action code itself:

@response . t im e t o l i v e = 10 . minutes

64

5.2. DEPLOYMENT 65

5.2 Deployment

In this chapter I show how the developed code is carried to the frontend and webclient

production systems and how it is activated.

5.2.1 Automated Deployment with Capistrano

For the deployment of the frontend and webclient we used capistrano (see [Cap07c]).

Capistrano is a utility which can be used to automate the deployment of applications.

It can execute commands in parallel on multiple machines and automates the process

of making a new version of an application available on one or more web servers,

including supporting tasks such as changing databases.

“Capistrano is written in the Ruby language and is distributed using the RubyGems

[Rub07] distribution channel. It is an outgrowth of the Ruby on Rails web appli-

cation framework, but has also been used to deploy web applications written using

other frameworks.” [Wik07a]

Application deployment is one of those things that becomes more and more com-

plicated as the scale of an application increases. With just one single box run-

ning a database and the application, it’s quite simple. But when it is necessary

to put the database on a different server and then separating the web servers

from the app servers and eventually splitting your database into master and slave

servers, it gets more and more complex. It may come to the point where ad-

ministrators almost don’t want to deploy their applications manually any more.

[Cap07a]

“Capistrano is a standalone utility that can also integrate nicely with Rails. You

simply provide Capistrano with a deployment ’recipe’ that describes your various

servers and their roles and voila! You magically have single-command deployment.

It even allows you to roll a bad version out of production and revert back to the

previous release.

It should be stated that the concepts that Capistrano uses and encourages are not

specific to Rails, or even Ruby. They are common-sense practices that are applicable

to a variety of environments. In fact, you’ll find that there is very little that is Rails-

specific about Capistrano, aside from the fact that it is in Rails that it found its

genesis. No matter where you are or what environment you are using, Capistrano can

probably help ease your deployment pains.“ [Cap07b]

65

5.2. DEPLOYMENT 66

The capistrano homepage with more information can be found at [Cap07c].

5.2.2 Download Statistics Import via Cronjob

To update the download counters in the Build Service frontend and feed it with

actual data, there are two scripts:

create stats xml.rb to get statistics from the opensuse redirector database and

write them into an XML file (see B.22 on page 97 for the source code)

send stats to api.sh to send this xml file to the Build Service frontend where it is

stored in its own database

These two scripts have to run regularly. Due to the low demand for be-

ing up to date I decided to run them just twice a day: at midnight and at

noon.

In order to get some feedback (see below) from these scripts, a wrapper script that

calls them and adds some text and timing information was written:

1 #!/bin/bash

2

3 echo −e "\nget statistics from the opensuse redirector: ..."

4 time ˜/ bin / c r e a t e s t a t s xm l . rb

5

6 echo −e "\nsend statistics to the Build Service api: ..."

7 time ˜/ bin / s e nd s t a t s t o a p i . sh

This wrapper script is now called by cron twice a day. After it ran, the output

is sent via email to a given address. The following line in the crontab of the user

’opensuse’ executes the regular calls:

1 00 01 ,13 ∗ ∗ ∗ ˜/ bin / update download stats 2>&1 | mail −s "download

2 statistics import result" dmayr@suse . de

The resulting mail looks like this:

1 get s t a t i s t i c s from the opensuse r e d i r e c t o r : . . .

2

3 r e d i r e c t o r s t a t i s t i c s wr i t t en as XML to r e d i r e c t s t a t s . xml , s i z e i s 67420 Kb.

4

5 r e a l 4m50.896 s

6 user 4m42.870 s

7 sys 0m4.528 s

8

9 send s t a t i s t i c s to the Build Se rv i c e api : . . .

10

11 <?xml ve r s i on="1.0" encoding="UTF -8"?>

12 <s t a tu s code="ok">

66

5.3. TESTING 67

13 <summary>Ok</summary>

14 <d e t a i l s ></d e t a i l s >

15 </status>

16

17 r e a l 77m0.789 s

18 user 0m0.020 s

19 sys 0m0.224 s

5.3 Testing

5.3.1 Rails Testing Framework

Rails has a sophisticated testing framework built in. It allows automated test-

ing of controller and model classes. This helps developers to check constantly

whether the application still behaves as planned during development or not. Fur-

thermore it is possible to develop test-driven: first write tests that define how

the application should behave and then write the code to meet the test require-

ments.

There are three sorts of tests available:

unit tests to test the models. Usually the CRUD functions (create, read, update

and delete) and all custom model methods are tested with unit tests.

functional tests to test the controllers and their methods.

integration tests to test the cooperation of multiple controllers with sessions and

routing in mind.

For the Build Service I implemented only functional tests in the frontend. This is

sufficient to ensure that they work as suspected due to the simplicity of the models

and the lack of session depending functionality.

Rails uses a separate database for testing. To have a defined starting point for every

test, the Rails framework clears this database every time a test run is started and

fills it with a defined set of test data. This initial test data setup is defined in so

called fixtures. Such a fixture file could look like listing 5.1, which is defined in the

YAML format. This way it is assured that previous tests do not influence the result

of current tests.

67

5.3. TESTING 68

Listing 5.1: Example YAML test fixture for users
1 admin :
2 id : 1
3 name : admin
4 emai l : admin@suse . de
5
6 dmayr :
7 id : 2
8 name : dmayr
9 emai l : dmayr@suse . de

5.3.2 Implemented Tests

Because of the importance of the Build Service frontend, I implemented tests for the

most important statistics functions.

The following test methods are implemented:

test latest added tests the latest added function and traverses therefore the fol-

lowing steps:

• get /statistics/latest_added

• response was successful?

• response contains the XML element project ?

• response contains latest added object according to the fixture data?

test latest updated tests the latest updated function and traverses therefore the

following steps:

• get /statistics/latest_updated

• response was successful?

• response contains the XML element project ?

• response contains latest updated object according to the fixtures?

test download counter tests the download counter function and traverses there-

fore the following steps:

• get /statistics/download_counter

• response was successful?

• response contains the XML element download_counter with the sub-

element count ?

68

5.3. TESTING 69

• response contains count element with attributes for the most down-

loaded file according to the fixtures?

test download counter group by tests the download counter function where re-

sults are grouped by type and traverses therefore the following steps:

• get /statistics/download_counter?group_by=project

• response was successful?

• response contains the XML element download_counter with the sub-

element count ?

• response contains count element with attributes for the most down-

loaded file according to the fixtures?

• get /statistics/download counter?

group by=arch& project=Apache&package=apache2

• response was successful?

• response contains the XML element download_counter with the sub-

element count ?

• response contains count element with attributes for the most down-

loaded file in the apache2 package inside the Apache project?

test most active tests the most active function and traverses therefore the follow-

ing steps:

• get /statistics/most_active?type=packages

• response was successful?

• response contains the XML element most_active with the sub-element

package ?

• response contains package element with attributes for the most active

package according to the fixtures?

• get /statistics/most_active?type=projects

• response was successful?

• response contains the XML element ’most active’ with the sub-element

project ?

69

5.3. TESTING 70

• response contains project element with attributes for the most active

project according to the fixtures?

test highest rated tests the highest rated function and traverses therefore the fol-

lowing steps:

• get /statistics/highest_rated

• response was successful?

• response contains the XML element highest_rated with the sub-

element project ?

• response contains project element with attributes for the highest rated

project according to the fixtures?

In listing 5.2 you can see the extract of the file test/functional/statis-

tics_controller_test.rb that tests the download_counter method of the Build

Service frontend. The full listing of all implemented tests is imprinted in the ap-

pendix starting on page 99.

Listing 5.2: Example functional test for download counters
1 c l a s s S t a t i s t i c sC on t r o l l e rT e s t < Test : : Unit : : TestCase
2
3 f i x t u r e s : p ro j e c t s , : packages , : download stats
4
5 de f te s t download counter group by
6 p r epa r e r eque s t w i th u s e r @request , ’tom’ , ’thunder ’

7
8 # without project - & package -filter

9 get : download counter , {
10 ’group_by ’ => ’project ’

11 }
12 a s s e r t r e s p on s e : s u c c e s s
13 a s s e r t t a g : tag => ’download_counter ’ , : c h i l d => { : tag => ’count ’ }
14 a s s e r t t a g : tag => ’download_counter ’ , : a t t r i b u t e s => { : a l l => 9302 }
15 a s s e r t t a g : tag => ’count ’ , : a t t r i b u t e s => {
16 : p r o j e c t => ’Apache ’ , : f i l e s => ’9’

17 } , : content => ’8806’

18
19 # with project - & package -filter

20 get : download counter , {
21 ’project ’ => ’Apache ’ , ’package ’ => ’apache2 ’ , ’group_by ’ => ’arch’

22 }
23 a s s e r t r e s p on s e : s u c c e s s
24 a s s e r t t a g : tag => ’download_counter ’ , : c h i l d => { : tag => ’count ’ }
25 a s s e r t t a g : tag => ’download_counter ’ ,
26 : a t t r i b u t e s => { : a l l => 9302 }
27 a s s e r t t a g : tag => ’count ’ , : a t t r i b u t e s => {
28 : arch => ’x86_64 ’ , : f i l e s => ’6’

29 } , : content => ’5537’

30 end
31
32 end

70

6 Conclusion and Outlook

In this chapter I will review the parts of the system that I have implemented and give

a brief outlook on the further development of the project.

At the end of the writing of this thesis the openSUSE Build Service had about 1200

users, nearly 9000 packages included in about 700 projects.

On the one hand the separation into the three tiers - the client(s), the frontend

and the backend - the basic architecture of the openSUSE Build Service gives high

flexibility and scalability. But on the other hand development may be a bit more

complicated, because changes that concern more than one tier need to be made

concurrently by all involved developers and need to be implemented in all the affected

tiers at the same time.

Development with Ruby on Rails is clear, easy and transparent. Sometimes it be-

comes misleading when non-obvious dynamical created methods come into effect.

This issue is faced with the possibility to write tests for the application, that can

be run everytime while development and runtime. It is even possible to develop

test-driven, which means first writing tests and then the code to fulfill the test

requirements.

Ruby on Rails is a well elaborated, consistent and practical application develop-

ment framework, which is a joy to use and which makes it easier to develop,

test, deploy and maintain web applications than anything else I have used so

far.

Ruby allows to write short, precise and maintainable code, a very important aspect

when many developers are involved in a project.

The statistics facilitate to browse the Build Service content in complete new

level. It delivers very useful information to users of the Build Service and the

Build Service team. They represent the activity of the involved users, usage

of the results, popularity of packages and acceptance of the whole Build Ser-

vice.

71

72

Especially end-users benefit from the implemented enhancements. They can now

find software easier, which is interesting in many different aspects. But also the Build

Service team and SUSE as company benefits from the statistics as they reflect the

acceptance, popularity and usage of the whole system very well. Project managers

inside SUSE can use the information to determine how active package maintainers

are and which packages are the real demanded ones.

Outlook

The Build Service will be opened entirely to the public soon, so no manual approval

steps of the user registration will be necessary in the near future. This will give

us a broader user base in the future and also much more load on our servers and

storage systems. It remains to be seen how well the system behaves with this

challenge, but as the basic concepts are well deliberated no bigger problems are

expected.

As further improvement for the Build Service statistics it would be nice to have some

kind of history or graph for the download counters, so the progression of download

requests over a period of time is visible. To achieve this, the round robin database

rrdtool [Oet07] and its tools would be a good solution. The rrdtool can produce

nice graphs like the example in figure 6.1.

For the other statistic objectives of this thesis it would also be nice to be able to see

how e.g. rating of a package or its activity changes over time.

Figure 6.1: RRDtool example how download statistics graph could look like

To improve the performance of the download statistics import even more, it would

be good for the future to use another XML parser as for example libXML for Ruby.

As [Lib07] shows, this parser, written in C, should be much faster than any Ruby

implementation. In addition, the SQL queries in the Build Service frontend to get the

download counters needs to be improved and optimized.

72

73

For the future the openSUSE Build Service will become more and more important. In

the long-term, it will replace the system that is currently responsible for the complete

building of the official openSUSE Linux distribution.

73

List of Figures

3.1 Screenshot of vim with the project plugin 12

3.2 Standard HTTP request . 14

3.3 Ajax request . 15

3.4 Ajax updates rating stars and message box without reloading the

whole page . 15

3.5 Rails dir structure . 17

3.6 Ruby on Rails architecture . 18

3.7 Build Service - Architectural Overview 24

3.8 Build Service - overview from source code to end-user 25

3.9 Build Service webclient startpage . 28

4.1 Use case analysis for latest added/updated projects/packages 33

4.2 Use case analysis for rating . 34

4.3 Use case analysis for download statistics 35

4.4 Use case analysis for activity of Build Service objects 36

4.5 Communication between webclient and frontend while getting the list

of latest added objects . 39

4.6 Rating stars next to the project header 40

4.7 Simplified class diagram of involved classes for rating 41

4.8 Sequence diagram for rating . 42

4.9 Typical gradient of package activity over approx. half a year 43

4.10 Download URL parts as parsed by the statistics module of the redirector 45

4.11 Screenshot of the statistics overview in the webclient 46

4.12 Package statistics on a separate read only page 49

4.13 All statistics link to a view, where more items can be displayed 50

4.14 Screenshot of latest added projects/packages in webclient 53

4.15 Screenshot of latest updated projects/packages in webclient 54

4.16 Screenshot of highest rated projects/packages in webclient 55

4.17 Simplified example of rating table relations 56

4.18 Screenshot of most active projects/packages in webclient 58

74

List of Figures 75

4.19 Separate databases for the download redirector and the Build Service 59

4.20 Screenshot of most downloaded projects/packages in webclient 60

4.21 Screenshot of detailed download statistics with active filter 60

4.22 Program flow chart of the download statistics import in the frontend 61

6.1 RRDtool example how download statistics graph could look like . . . 72

75

List of Tables

3.1 Customers example table . 20

3.2 Bills example table . 20

4.1 Frontend interface for latest added projects/packages 38

4.2 Frontend interface for latest updated projects/packages 40

4.3 Frontend interface for highest rated projects/packages 40

4.4 Frontend interface for most active projects/packages 43

4.5 openSUSE download redirector statistics table excerpt 44

4.6 Frontend interface for most downloaded projects/packages 45

4.7 Frontend download statistics table excerpt 60

76

List of Listings

SVN command to check out the current state of the Build Service source

code . 12

Example for string and number object operations 16

Example for iterating an array . 16

Simple ActionController example . 19

Simple ActionView example . 19

3.1 Simple ActiveRecord Model example 20

3.2 Access ActiveRecord Model Data example 20

Simple XML data file . 29

The ActiveXML way to access XML data 29

ActiveXML model for the most active objects 48

ActiveXML configuration example entry 48

4.1 Migration for adding created at timestamps 51

XML Builder example . 51

XML Builder result example . 52

4.2 XML data for a single package timestamp 52

4.3 XML data for latest added objects 52

4.4 Webclient model for the latest added objects 52

4.5 XML data for a single package rating score 55

4.6 XML data for the highest rated objects 55

4.7 Models for rating . 55

SQL snippet for calculating package activity (Package model class method) 56

Example use of the SQL algorithm snippet 57

Package model update method that sets the activity index 57

Calculating the average activity of all packages for a project 57

Curl command line to send download counters to the Build Service 59

How the statistics controller uses the StreamHandler 63

Rails config option to turn caching on . 64

Activate enhanced Rails caching . 64

Activate caching per action . 64

77

List of Listings 78

Set ttl for caching per action . 64

Wrapper script for download statistics import 66

Crontab entry for download statistics import 66

Notification mail from download statistics import 66

5.1 Example YAML test fixture for users 68

5.2 Example functional test for download counters 70

Simple XML example . 79

Simple XML schema (XSD) example . 79

B.1 Redirector database table schema . 82

B.2 XML schema for timestamp when project/package was added 82

B.3 XML schema for latest added projects/packages 83

B.4 XML schema for timestamp when project/package was updated . . . 83

B.5 XML schema for latest updated projects/packages 84

B.6 XML schema for the rating score of a single project/package 85

B.7 XML schema for the highest rated projects/packages 86

B.8 XML schema for activity of a single project/package 87

B.9 XML schema for most active projects/packages 87

B.10 XML schema for a list of top downloaded files 88

B.11 XML schema for a list of top downloaded projects 89

B.12 XML schema for redirector statistics import format 90

B.13 SQL database table for ratings . 92

B.14 Essential excerpt of webclient/config/environment.rb, where the Ac-

tiveXML models relevant for the statistics are configured 92

B.15 Frontend controller part, to return latest added packages and projects 92

B.16 Frontend controller part, to return the added timestamp of a package

or project . 93

B.17 Frontend view, to to build latest added XML data 93

B.18 Frontend view, to to build added timestamp XML data 93

B.19 Webclient Helper for the statistic views 94

B.20 General webclient Helper . 95

B.21 Frontend controller methods that care for rating 96

B.22 Script to create download statistics XML file from the redirector

database . 97

B.23 Functional tests implemented in the frontend 99

B.24 StreamHandler part of the frontend statistics controller to import the

download statistics . 100

B.25 The complete frontend statistics controller 102

78

A Technologies

A.1 XML

The Extensible Markup Language, mostly abbreviated as XML, is a general pur-

pose markup language. Its primary purpose is to share and transport data

across different information systems, particularly via the Internet. XML is

a free and open standard recommended by the World Wide Web Consortium

[W3C07].

A simple XML example file could look like this:

1 <? xml ve r s i on="1.0" encoding="UTF -8" s tanda lone="no" ?>

2 <package name="kdelibs" p r o j e c t="KDE">

3 <t i t l e >KDE l i b r a r i e s </ t i t l e >

4 <de s c r i p t i on >Base l i b r a r i e s o f the KDE framework</de s c r i p t i on >

5 </package>

An XML document is called well-formed when it complies to the syntactic rules

for XML. When a well-formed XML document additionally follows the rules of a

particular XML schema, it is called a valid XML document. An XML schema

is a language for describing the structure and constrains XML documents. XML

schemata itself are also described in XML.

A simple XML schema, to be able to validate the above XML sample, could look

like the following:

1 <?xml ve r s i on="1.0" encoding="UTF -8"?>

2 <xs : schema xmlns : xs="http :// www.w3.org /2001/ XMLSchema"

3 elementFormDefault="qualified">

4 <xs : element name="package">

5 <xs : complexType>

6 <xs : sequence>

7 <xs : element name="title" type="xs:string" />

8 <xs : element name="description" type="xs:string" />

9 </xs : sequence>

10 <xs : a t t r i b u t e name="name" type="xs:string"/>

11 <xs : a t t r i b u t e name="project" type="xs:string"/>

12 </xs : complexType>

13 </xs : element>

79

A.2. WEB APPLICATIONS 80

14 </xs : schema>

XML is the essential data transmission format used all over the Build Service.

All communication between the three tiers – the backend, the frontend and the

different clients – is done via XML. Additionally there exist XML schemata,

which are used to validate all XML data received by the Build Service fron-

tend.

A.2 Web Applications

A web application uses a website as the frontend interface for an application running

on a central server. On the client side a standard web browser is sufficient to use a

web application.

Web applications are getting more and more popular because nearly every com-

puter has a web browser installed, so on the client side normally nothing needs

to be done to be able to use web applications. Because web application software

runs on central servers, they can be updated easily and without touching the client

side.

The Build Service provides three clients to access it (besides using the web service

API itself), see 3.3.2.3. The one client that is addressed with this thesis is a web

application, the openSUSE Build Service webclient.

A.3 Web Services

A web service can be defined as a software application, that is addressable with

an URI, communicates via standard HTTP or HTTPS protocol and sends/receives

data as XML snippets. Web services are primarily designed to interact with other

software applications in a standardized way.

There are many examples for public web services:

Google the well known internet search engine provides an open interface to use its

search functions and other services in other applications. For more information

see [Goo07]

Flickr provides an open platform for everyone to upload and share photos with an

open web service API. For more information on their web service see [Fli07]

80

A.4. DBMS 81

Amazon provides developers with direct access to Amazons technology platform.

This helps third party suppliers offering book ordering services or e.g. historical

book pricings integrated in their own services. For details see [Ama07].

eBay offers an API for developers to design their own applications to interact with

eBay. See [eBa07].

The Build Service frontend, which implements the API for the Build Service, is also

a web service. This is described on page 26.

A.4 DBMS

“A database management system (DBMS) is a complex set of software pro-

grams that controls the organization, storage and retrieval of data in a database.”

[Wik07b]

The DBMS manages user requests so that users and other programs are free from

having to understand where the data is physically located on storage media. Fur-

thermore database management systems take care of concurrent access from multiple

clients, data consistency and data integrity. To interact with a DBMS usually slight

various dialects of SQL are used.

Popular examples for DBMS are Oracle, MySQL and DB2. The Build Service uses

the MySQL DBMS for data storage in the frontend tier – see the technical overview

of the Build Service in section 3.3.

81

B Listings

Listing B.1: Redirector database table schema
1 CREATE TABLE ‘ r e d i r e c t s t a t s ‘ (

2 ‘ id ‘ i n t (11) NOT NULL auto increment ,

3 ‘ p ro j e c t ‘ varchar (255) d e f au l t NULL,

4 ‘ r epo s i t o ry ‘ varchar (255) d e f au l t NULL,

5 ‘ arch ‘ varchar (10) d e f au l t NULL,

6 ‘ f i l ename ‘ varchar (255) d e f au l t NULL,

7 ‘ f i l e t y p e ‘ varchar (10) d e f au l t NULL,

8 ‘ ver s ion ‘ varchar (255) d e f au l t NULL,

9 ‘ r e l e a s e ‘ varchar (255) d e f au l t NULL,

10 ‘ count ‘ i n t (11) d e f au l t ’0’ ,

11 ‘ package ‘ varchar (255) d e f au l t NULL,

12 ‘ c r ea t ed at ‘ timestamp NULL de f au l t CURRENT TIMESTAMP,

13 ‘ counted at ‘ timestamp NULL de f au l t NULL,

14 PRIMARY KEY (‘ id ‘) ,

15 KEY ‘ pro j e c t ‘ (‘ p ro j e c t ‘) ,

16 KEY ‘ package ‘ (‘ package ‘) ,

17 KEY ‘ r epo s i t o ry ‘ (‘ r epo s i t o ry ‘) ,

18 KEY ‘ arch ‘ (‘ arch ‘) ,

19 KEY ‘ f i l ename ‘ (‘ f i l ename ‘) ,

20 KEY ‘ f i l e t y p e ‘ (‘ f i l e t y p e ‘) ,

21 KEY ‘ vers ion ‘ (‘ ver s ion ‘) ,

22 KEY ‘ r e l e a s e ‘ (‘ r e l e a s e ‘)

23) ENGINE=MyISAM AUTO INCREMENT=1 ;

Listing B.2: XML schema for timestamp when project/package was added
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="latest_added">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 Package or p r o j e c t with timestamp when i t was added .

8 </ xs :documentat ion>

9 </ xs : annota t i on>

10 <xs:complexType>

11 <x s : c h o i c e minOccurs="1" maxOccurs="1">

12 <xs : e l ement r e f="package" minOccurs="1" maxOccurs="1" />

13 <xs : e l ement r e f="project" minOccurs="1" maxOccurs="1" />

14 </ x s : c h o i c e>

15 </xs:complexType>

16 </ xs : e l ement>

17

18 <xs : e l ement name="package">

82

83

19 <xs:complexType>

20 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

21 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

22 <x s : a t t r i b u t e name="created" type="xs:dateTime" use="required" />

23 </xs:complexType>

24 </ xs : e l ement>

25

26 <xs : e l ement name="project">

27 <xs:complexType>

28 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

29 <x s : a t t r i b u t e name="created" type="xs:dateTime" use="required" />

30 </xs:complexType>

31 </ xs : e l ement>

32

33 </xs:schema>

Listing B.3: XML schema for latest added projects/packages
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="latest_added">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 L i s t o f packages and p r o j e c t s l a t e s t added to the openSUSE bu i ld

8 s e r v i c e ordered by c r e a t i on timestamp .

9 </ xs :documentat ion>

10 </ xs : annota t i on>

11 <xs:complexType>

12 <x s : c h o i c e minOccurs="0" maxOccurs="unbounded">

13 <xs : e l ement r e f="package" minOccurs="0" maxOccurs="unbounded" />

14 <xs : e l ement r e f="project" minOccurs="0" maxOccurs="unbounded" />

15 </ x s : c h o i c e>

16 </xs:complexType>

17 </ xs : e l ement>

18

19 <xs : e l ement name="package">

20 <xs:complexType>

21 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

22 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

23 <x s : a t t r i b u t e name="created" type="xs:dateTime" use="required" />

24 </xs:complexType>

25 </ xs : e l ement>

26

27 <xs : e l ement name="project">

28 <xs:complexType>

29 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

30 <x s : a t t r i b u t e name="created" type="xs:dateTime" use="required" />

31 </xs:complexType>

32 </ xs : e l ement>

33

34 </xs:schema>

Listing B.4: XML schema for timestamp when project/package was updated
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

83

84

3

4 <xs : e l ement name="latest_updated">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 Package or p r o j e c t with timestamp o f the l a s t update .

8 </ xs :documentat ion>

9 </ xs : annota t i on>

10 <xs:complexType>

11 <x s : c h o i c e minOccurs="1" maxOccurs="1">

12 <xs : e l ement r e f="package" minOccurs="1" maxOccurs="1" />

13 <xs : e l ement r e f="project" minOccurs="1" maxOccurs="1" />

14 </ x s : c h o i c e>

15 </xs:complexType>

16 </ xs : e l ement>

17

18 <xs : e l ement name="package">

19 <xs:complexType>

20 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

21 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

22 <x s : a t t r i b u t e name="updated" type="xs:dateTime" use="required" />

23 </xs:complexType>

24 </ xs : e l ement>

25

26 <xs : e l ement name="project">

27 <xs:complexType>

28 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

29 <x s : a t t r i b u t e name="updated" type="xs:dateTime" use="required" />

30 </xs:complexType>

31 </ xs : e l ement>

32

33 </xs:schema>

Listing B.5: XML schema for latest updated projects/packages
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="latest_updated">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 L i s t o f packages and p r o j e c t s l a t e s t updated in the openSUSE bu i ld

8 s e r v i c e ordered by the updated timestamp .

9 </ xs :documentat ion>

10 </ xs : annota t i on>

11 <xs:complexType>

12 <x s : c h o i c e minOccurs="0" maxOccurs="unbounded">

13 <xs : e l ement r e f="package" minOccurs="0" maxOccurs="unbounded" />

14 <xs : e l ement r e f="project" minOccurs="0" maxOccurs="unbounded" />

15 </ x s : c h o i c e>

16 </xs:complexType>

17 </ xs : e l ement>

18

19 <xs : e l ement name="package">

20 <xs:complexType>

21 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

22 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

23 <x s : a t t r i b u t e name="updated" type="xs:dateTime" use="required" />

84

85

24 </xs:complexType>

25 </ xs : e l ement>

26

27 <xs : e l ement name="project">

28 <xs:complexType>

29 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

30 <x s : a t t r i b u t e name="updated" type="xs:dateTime" use="required" />

31 </xs:complexType>

32 </ xs : e l ement>

33

34 </xs:schema>

Listing B.6: XML schema for the rating score of a single project/package
1 <?xml ve r s i on="1.0" encoding="UTF -8"?>

2

3 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema"

4 elementFormDefault="qualified">

5

6 <xs : annota t i on>

7 <xs :documentat ion>

8 This schema de s c r i b e s the format f o r r a t i n g s o f ob j e c t s

9 (packages / p r o j e c t s) o f the opensuse bu i ld s e r v i c e .

10 </ xs :documentat ion>

11 </ xs : annota t i on>

12

13

14 <xs:complexType name="rating" mixed="true">

15 <xs : annota t i on>

16 <xs :documentat ion>

17 This element conta in s the r a t i ng s co r e and some (op t i ona l) a t t r i b u t e s

18 to i d e n t i f y the rated ob j e c t .

19 </ xs :documentat ion>

20 </ xs : annota t i on>

21 <x s : a t t r i b u t e name="project" type="xs:string" />

22 <x s : a t t r i b u t e name="package" type="xs:string" />

23 <x s : a t t r i b u t e name="count" type="xs:nonNegativeInteger" />

24 <x s : a t t r i b u t e name="user_score" type="scoreInteger">

25 <xs : annota t i on>

26 <xs :documentat ion>

27 This i s the value which the cu r r en t l y logged in user gave

28 t h i s p r o j e c t /package .

29 </ xs :documentat ion>

30 </ xs : annota t i on>

31 </ x s : a t t r i b u t e>

32 </xs:complexType>

33

34 <xs : e l ement name="rating" type="rating" />

35

36 <xs :s impleType name="scoreInteger">

37 <x s : r e s t r i c t i o n base="xs:integer">

38 <x s :m in In c l u s i v e va lue="0"/>

39 <xs :maxInc lu s ive va lue="5"/>

40 </ x s : r e s t r i c t i o n>

41 </ xs :s impleType>

42

43 </xs:schema>

85

86

Listing B.7: XML schema for the highest rated projects/packages
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="highest_rated">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 L i s t o f the h i ghe s t rated packages and p r o j e c t s o f the

8 openSUSE bu i ld s e r v i c e ordered by ra t i ng .

9 </ xs :documentat ion>

10 </ xs : annota t i on>

11 <xs:complexType>

12 <x s : c h o i c e minOccurs="0" maxOccurs="unbounded">

13 <xs : e l ement r e f="package" minOccurs="0" maxOccurs="unbounded" />

14 <xs : e l ement r e f="project" minOccurs="0" maxOccurs="unbounded" />

15 </ x s : c h o i c e>

16 </xs:complexType>

17 </ xs : e l ement>

18

19 <xs : e l ement name="package">

20 <xs:complexType>

21 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

22 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

23 <x s : a t t r i b u t e name="count" type="xs:nonNegativeInteger" use="required">

24 <xs : annota t i on>

25 <xs :documentat ion>

26 Count o f votes / r a t i n g s f o r t h i s package .

27 </ xs :documentat ion>

28 </ xs : annota t i on>

29 </ x s : a t t r i b u t e>

30 <x s : a t t r i b u t e name="score" type="scoreFloat" use="required" />

31 </xs:complexType>

32 </ xs : e l ement>

33

34 <xs : e l ement name="project">

35 <xs:complexType>

36 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

37 <x s : a t t r i b u t e name="count" type="xs:nonNegativeInteger" use="required">

38 <xs : annota t i on>

39 <xs :documentat ion>

40 Count o f votes / r a t i n g s f o r t h i s p r o j e c t .

41 </ xs :documentat ion>

42 </ xs : annota t i on>

43 </ x s : a t t r i b u t e>

44 <x s : a t t r i b u t e name="score" type="scoreFloat" use="required" />

45 </xs:complexType>

46 </ xs : e l ement>

47

48 <xs :s impleType name="scoreFloat">

49 <x s : r e s t r i c t i o n base="xs:float">

50 <x s :m in In c l u s i v e va lue="0"/>

51 <xs :maxInc lu s ive va lue="5"/>

52 </ x s : r e s t r i c t i o n>

53 </ xs :s impleType>

54

55 </xs:schema>

86

87

Listing B.8: XML schema for activity of a single project/package
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="activity">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 Package or p r o j e c t with a c t i v i t y value .

8 </ xs :documentat ion>

9 </ xs : annota t i on>

10 <xs:complexType>

11 <x s : c h o i c e minOccurs="1" maxOccurs="1">

12 <xs : e l ement r e f="package" minOccurs="1" maxOccurs="1" />

13 <xs : e l ement r e f="project" minOccurs="1" maxOccurs="1" />

14 </ x s : c h o i c e>

15 </xs:complexType>

16 </ xs : e l ement>

17

18 <xs : e l ement name="package">

19 <xs:complexType>

20 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

21 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

22 <x s : a t t r i b u t e name="activity" type="xs:float" use="required" />

23 </xs:complexType>

24 </ xs : e l ement>

25

26 <xs : e l ement name="project">

27 <xs:complexType>

28 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

29 <x s : a t t r i b u t e name="activity" type="xs:float" use="required" />

30 </xs:complexType>

31 </ xs : e l ement>

32

33 </xs:schema>

Listing B.9: XML schema for most active projects/packages
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="most_active">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 L i s t o f most a c t i v e packages or p r o j e c t s in the openSUSE bu i ld

8 s e r v i c e ordered a c t i v i t y .

9 </ xs :documentat ion>

10 </ xs : annota t i on>

11 <xs:complexType>

12 <x s : c h o i c e>

13 <xs : s equence>

14 <xs : e l ement r e f="package" minOccurs="0" maxOccurs="unbounded" />

15 </ xs : s equence>

16 <xs : s equence>

17 <xs : e l ement r e f="project" minOccurs="0" maxOccurs="unbounded" />

18 </ xs : s equence>

19 </ x s : c h o i c e>

20 </xs:complexType>

87

88

21 </ xs : e l ement>

22

23 <xs : e l ement name="package">

24 <xs:complexType>

25 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

26 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

27 <x s : a t t r i b u t e name="activity" type="activityFloat" use="required" />

28 <x s : a t t r i b u t e name="update_count" type="xs:nonNegativeInteger" use="required"

>

29 <xs : annota t i on>

30 <xs :documentat ion>

31 Count o f updates a package a l r eady had .

32 </ xs :documentat ion>

33 </ xs : annota t i on>

34 </ x s : a t t r i b u t e>

35 </xs:complexType>

36 </ xs : e l ement>

37

38 <xs : e l ement name="project">

39 <xs:complexType>

40 <x s : a t t r i b u t e name="name" type="xs:string" use="required" />

41 <x s : a t t r i b u t e name="activity" type="activityFloat" use="required" />

42 <x s : a t t r i b u t e name="packages" type="xs:nonNegativeInteger" use="required">

43 <xs : annota t i on>

44 <xs :documentat ion>

45 Count o f packages t h i s p r o j e c t has .

46 </ xs :documentat ion>

47 </ xs : annota t i on>

48 </ x s : a t t r i b u t e>

49 </xs:complexType>

50 </ xs : e l ement>

51

52 <xs :s impleType name="activityFloat">

53 <x s : r e s t r i c t i o n base="xs:float">

54 <x s :m in In c l u s i v e va lue="0"/>

55 <xs :maxInc lu s ive va lue="100"/>

56 </ x s : r e s t r i c t i o n>

57 </ xs :s impleType>

58

59 </xs:schema>

Listing B.10: XML schema for a list of top downloaded files
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="download_counter">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 Download counter − top bu i ld s e r v i c e downloads .

8 </ xs :documentat ion>

9 </ xs : annota t i on>

10 <xs:complexType>

11 <xs : s equence>

12 <xs : e l ement r e f="count" minOccurs="0" maxOccurs="unbounded" />

13 </ xs : s equence>

14 <x s : a t t r i b u t e name="first" use="required" type="xs:dateTime">

88

89

15 <xs : annota t i on>

16 <xs :documentat ion>

17 Timestamp o f f i r s t counted download (o f a l l counter s) .

18 </ xs :documentat ion>

19 </ xs : annota t i on>

20 </ x s : a t t r i b u t e>

21 <x s : a t t r i b u t e name="last" use="required" type="xs:dateTime">

22 <xs : annota t i on>

23 <xs :documentat ion>

24 Timestamp o f l a s t counted download (o f a l l counter s) .

25 </ xs :documentat ion>

26 </ xs : annota t i on>

27 </ x s : a t t r i b u t e>

28 <x s : a t t r i b u t e name="sum" use="required" type="xs:nonNegativeInteger">

29 <xs : annota t i on>

30 <xs :documentat ion>

31 Sum of a l l counted downloads o f the s e l e c t e d ob j e c t s

32 (p r o j e c t /package/ repo / arch) .

33 </ xs :documentat ion>

34 </ xs : annota t i on>

35 </ x s : a t t r i b u t e>

36 <x s : a t t r i b u t e name="all" use="required" type="xs:nonNegativeInteger">

37 <xs : annota t i on>

38 <xs :documentat ion>

39 Sum of a l l counted downloads (o f the whole bu i ld s e r v i c e) .

40 </ xs :documentat ion>

41 </ xs : annota t i on>

42 </ x s : a t t r i b u t e>

43 </xs:complexType>

44 </ xs : e l ement>

45

46 <xs : e l ement name="count">

47 <xs:complexType mixed="true">

48 <x s : a t t r i b u t e name="project" type="xs:string" use="required" />

49 <x s : a t t r i b u t e name="repository" type="xs:string" use="required" />

50 <x s : a t t r i b u t e name="package" type="xs:string" use="required" />

51 <x s : a t t r i b u t e name="architecture" type="xs:string" use="required" />

52 <x s : a t t r i b u t e name="filename" type="xs:string" use="required" />

53 <x s : a t t r i b u t e name="filetype" type="xs:string" use="required" />

54 <x s : a t t r i b u t e name="version" type="xs:string" use="required" />

55 <x s : a t t r i b u t e name="release" type="xs:string" use="required" />

56 </xs:complexType>

57 </ xs : e l ement>

58

59 </xs:schema>

Listing B.11: XML schema for a list of top downloaded projects
1 <?xml ve r s i on="1.0" encoding="UTF -8" ?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema">

3

4 <xs : e l ement name="download_counter">

5 <xs : annota t i on>

6 <xs :documentat ion>

7 Download counter − top bu i ld s e r v i c e downloads .

8 </ xs :documentat ion>

9 </ xs : annota t i on>

89

90

10 <xs:complexType>

11 <xs : s equence>

12 <xs : e l ement r e f="count" minOccurs="0" maxOccurs="unbounded" />

13 </ xs : s equence>

14 <x s : a t t r i b u t e name="first" use="required" type="xs:dateTime">

15 <xs : annota t i on>

16 <xs :documentat ion>

17 Timestamp o f f i r s t counted download (o f a l l counter s) .

18 </ xs :documentat ion>

19 </ xs : annota t i on>

20 </ x s : a t t r i b u t e>

21 <x s : a t t r i b u t e name="last" use="required" type="xs:dateTime">

22 <xs : annota t i on>

23 <xs :documentat ion>

24 Timestamp o f l a s t counted download (o f a l l counter s) .

25 </ xs :documentat ion>

26 </ xs : annota t i on>

27 </ x s : a t t r i b u t e>

28 <x s : a t t r i b u t e name="sum" use="required" type="xs:nonNegativeInteger">

29 <xs : annota t i on>

30 <xs :documentat ion>

31 Sum of a l l counted downloads (o f the whole bu i ld s e r v i c e) .

32 </ xs :documentat ion>

33 </ xs : annota t i on>

34 </ x s : a t t r i b u t e>

35 </xs:complexType>

36 </ xs : e l ement>

37

38 <xs : e l ement name="count">

39 <xs:complexType mixed="true">

40 <x s : a t t r i b u t e name="files" type="xs:nonNegativeInteger" use="required">

41 <xs : annota t i on>

42 <xs :documentat ion>

43 Sum of a l l d i f f e r e n t f i l e s that are in t h i s con ta ine r

44 (pro j e c t , package , repo or arch) .

45 </ xs :documentat ion>

46 </ xs : annota t i on>

47 </ x s : a t t r i b u t e>

48 <x s : a t t r i b u t e name="project" type="xs:string" use="optional" />

49 <x s : a t t r i b u t e name="package" type="xs:string" use="optional" />

50 <x s : a t t r i b u t e name="repo" type="xs:string" use="optional" />

51 <x s : a t t r i b u t e name="arch" type="xs:string" use="optional" />

52 </xs:complexType>

53 </ xs : e l ement>

54

55 </xs:schema>

Listing B.12: XML schema for redirector statistics import format
1 <?xml ve r s i on="1.0" encoding="UTF -8"?>

2 <xs:schema xmlns :xs="http: //www.w3.org /2001/ XMLSchema"

3 elementFormDefault="qualified">

4

5

6 <xs : e l ement name="redirect_stats">

7 <xs : annota t i on>

8 <xs :documentat ion>

90

91

9 Deta i l ed download s t a t i s t i c s from r e d i r e c t o r .

10 </ xs :documentat ion>

11 </ xs : annota t i on>

12 <xs:complexType>

13 <xs : s equence>

14 <xs : e l ement r e f="project" minOccurs="0" maxOccurs="unbounded" />

15 </ xs : s equence>

16 </xs:complexType>

17 </ xs : e l ement>

18

19 <xs : e l ement name="project">

20 <xs:complexType mixed="true">

21 <xs : s equence>

22 <xs : e l ement r e f="package" minOccurs="0" maxOccurs="unbounded" />

23 </ xs : s equence>

24 <x s : a t t r i b u t e name="name" use="required" />

25 </xs:complexType>

26 </ xs : e l ement>

27

28 <xs : e l ement name="package">

29 <xs:complexType mixed="true">

30 <xs : s equence>

31 <xs : e l ement r e f="repository" minOccurs="0" maxOccurs="unbounded" />

32 </ xs : s equence>

33 <x s : a t t r i b u t e name="name" use="required" />

34 </xs:complexType>

35 </ xs : e l ement>

36

37 <xs : e l ement name="repository">

38 <xs:complexType mixed="true">

39 <xs : s equence>

40 <xs : e l ement r e f="arch" minOccurs="0" maxOccurs="unbounded" />

41 </ xs : s equence>

42 <x s : a t t r i b u t e name="name" use="required" />

43 </xs:complexType>

44 </ xs : e l ement>

45

46 <xs : e l ement name="arch">

47 <xs:complexType mixed="true">

48 <xs : s equence>

49 <xs : e l ement r e f="count" minOccurs="0" maxOccurs="unbounded" />

50 </ xs : s equence>

51 <x s : a t t r i b u t e name="name" use="required" />

52 </xs:complexType>

53 </ xs : e l ement>

54

55 <xs : e l ement name="count" >

56 <xs:complexType mixed="true">

57 <x s : a t t r i b u t e name="filename" use="required" type="xs:string" />

58 <x s : a t t r i b u t e name="filetype" use="required" type="xs:string" />

59 <x s : a t t r i b u t e name="version" use="required" type="xs:string" />

60 <x s : a t t r i b u t e name="release" use="required" type="xs:string" />

61 <x s : a t t r i b u t e name="created_at" use="required" type="xs:dateTime" />

62 <x s : a t t r i b u t e name="counted_at" use="required" type="xs:dateTime" />

63 </xs:complexType>

64 </ xs : e l ement>

65

91

92

66 </xs:schema>

Listing B.13: SQL database table for ratings
1 CREATE TABLE ‘ ra t ing s ‘ (

2 ‘ id ‘ i n t (11) NOT NULL auto increment ,

3 ‘ score ‘ i n t (11) d e f au l t NULL,

4 ‘ ob j e c t i d ‘ i n t (11) d e f au l t NULL,

5 ‘ ob j ec t type ‘ varchar (255) d e f au l t NULL,

6 ‘ c r ea t ed at ‘ datet ime de f au l t NULL,

7 ‘ u s e r id ‘ i n t (11) d e f au l t NULL,

8 PRIMARY KEY (‘ id ‘) ,

9 KEY ‘ object ‘ (‘ ob j e c t i d ‘) ,

10 KEY ‘ user ‘ (‘ u s e r id ‘)

11) ENGINE=InnoDB DEFAULT CHARSET=l a t i n 1 ;

Listing B.14: Essential excerpt of webclient/config/environment.rb, where the Ac-

tiveXML models relevant for the statistics are configured
1 ActiveXML : : Base . c on f i g do | conf |
2 conf . s e tup t r an spo r t do |map |
3 map . d e f a u l t s e r v e r : r e s t , "#{ FRONTEND_HOST }:#{ FRONTEND_PORT}"

4

5 # Statistics

6

7 map . connect : l a te s tadded , ’rest :/// statistics/latest_added ?:limit ’ ,

8 : s p e c i f i c => ’rest :/// statistics/added_timestamp /: project /: package ’

9

10 map . connect : l a te s tupdated , ’rest :/// statistics/latest_updated ?:limit ’ ,

11 : s p e c i f i c => ’rest :/// statistics/updated_timestamp /: project /: package ’

12

13 map . connect : downloadcounter , ’rest :/// statistics/download_counter ’ +

14 ’?: project &: package &:arch&:repo&: group_by &:limit ’

15

16 map . connect : rat ing , ’rest :/// statistics/rating /: project /: package ’ ,

17 : a l l => ’rest :/// statistics/highest_rated ?:limit ’

18

19 map . connect : mostact ive , ’rest :/// statistics/most_active ?:type&:limit ’ ,

20 : s p e c i f i c => ’rest :/// statistics/activity /: project /: package ’

21

22 map . connect : g l oba l counte r s , ’rest :/// statistics/global_counters ’ ,

23 : a l l => ’rest :/// statistics/global_counters ’

24

25 end

26 end

Listing B.15: Frontend controller part, to return latest added packages and projects
1 de f l a t e s t added

2

3 packages = DbPackage . f i nd : a l l ,

4 : from => ’db_packages pac , db_projects pro’ ,

5 : s e l e c t => ’pac.name , pac.created_at , pro.name AS project_name ’ ,

6 : c ond i t i on s => ’pro.id = pac.db_project_id ’ ,

7 : order => ’created_at DESC , name’ , : l im i t => @limit

92

93

8 p r o j e c t s = DbProject . f i nd : a l l ,

9 : s e l e c t => ’name , created_at ’ ,

10 : order => ’created_at DESC , name’ , : l im i t => @limit

11

12 l i s t = []

13 p r o j e c t s . each { | p r o j e c t | l i s t << p r o j e c t }
14 packages . each { | package | l i s t << package }
15 l i s t . s o r t ! { | a , b | b . c r e a t ed a t <=> a . c r e a t ed a t }
16

17 @ l i s t = l i s t [0 . . @limit −1]

18 end

Listing B.16: Frontend controller part, to return the added timestamp of a package

or project
1 de f added timestamp

2 @project = DbProject . f ind by name (params [: p r o j e c t])

3 @package = DbPackage . f i nd (: f i r s t , : c ond i t i on s =>

4 [’name=? AND db_project_id =?’ , params [: package] , @project . id]

5) i f @project

6 end

Listing B.17: Frontend view, to to build latest added XML data
1 xml . i n s t r u c t !

2

3 xml . l a t e s t added do

4 @ l i s t . each do | item |
5

6 ### item is a package

7 i f item . i n s t a n c e o f ? DbPackage

8 xml . package (

9 : name => item . name ,

10 : p r o j e c t => item . project name ,

11 : c r ea ted => item . c r e a t ed a t . xmlschema

12)

13 end

14

15 ### item is a project

16 i f item . i n s t a n c e o f ? DbProject

17 xml . p r o j e c t (

18 : name => item . name ,

19 : c r ea ted => item . c r e a t ed a t . xmlschema

20)

21 end

22

23 end

24 end

Listing B.18: Frontend view, to to build added timestamp XML data
1 xml . i n s t r u c t !

2

3 xml . l a t e s t added do

4

5 i f @package

93

94

6

7 xml . package (

8 : name => @package . name ,

9 : p r o j e c t => @package . db pro j e c t . name ,

10 : c r ea ted => @package . c r e a t ed a t . xmlschema

11)

12

13 e l s i f @project

14

15 xml . p r o j e c t (

16 : name => @project . name ,

17 : c r ea ted => @project . c r e a t ed a t . xmlschema

18)

19

20 end

21

22 end

Listing B.19: Webclient Helper for the statistic views
1 module S t a t i s t i c sH e l p e r

2

3 de f s t a t i s t i c s l i m i t f o r m (act ion , t i t l e=’’)

4 out = ’’

5 out << s t a r t f o rm tag (n i l , : method => : get)

6 out << s t a t i s t i c s l i m i t s e l e c t ("#{title} ")

7 out << h i d d e n f i e l d t a g (’more’ , params [: more])

8 out << h i d d e n f i e l d t a g (’package ’ , @package) i f @package

9 out << h i d d e n f i e l d t a g (’project ’ , @project) i f @project

10 out << h i d d e n f i e l d t a g (’repo’ , @repo) i f @repo

11 out << h i d d e n f i e l d t a g (’arch’ , @arch) i f @arch

12 out << image submit tag (’system -search ’)

13 out << image tag (’rotating -tail.gif’ , : border => 0 , : s t y l e => ’display: none;’

, : id => ’spinner ’)

14 out << end form tag

15 out << o b s e r v e f i e l d (: l im i t , : update => act ion ,

16 : u r l => { : a c t i on => act ion , : more => true ,

17 : p r o j e c t => @project , : package => @package ,

18 : arch => @arch , : repo => @repo

19 } ,

20 : with => "’limit=’ + escape(value)" , : l oad ing => "Element.show(’spinner ’)" ,

21 : complete => "Element.hide(’spinner ’)"

22)

23 re turn out

24 end

25

26 de f s t a t i s t i c s l i m i t s e l e c t (l e f t t e x t=’’ , r i g h t t e x t=’’)

27 out = ’’

28 out << "#{ left_text}"

29 out << s e l e c t t a g (’limit ’ , o p t i o n s f o r s e l e c t (

30 [[’...’ , 1 0] , [2 5 , 2 5] , [5 0 , 5 0] , [1 0 0 , 1 0 0] , [2 5 0 , 2 5 0] , [5 0 0 , 5 0 0]])

31)

32 out << j a v a s c r i p t t a g ("document.getElementById(’limit ’).focus ();")

33 out << "#{ right_text}"

34 re turn out

35 end

36

94

95

37 de f l i nk to package v i ew (name , pro j e c t , t i t l e=’’ , l ength=15)

38 l i n k t o image tag (’package ’ , : border => 0) + " #{ shorten_text(name , length)}"

,

39 { : a c t i on => ’view’ , : c o n t r o l l e r => ’package ’ ,

40 : package => name , : p r o j e c t => p r o j e c t } ,

41 : t i t l e => "Package #{name} #{title}"

42 end

43

44 de f l i n k t o p r o j e c t v i ew (name , t i t l e=’’ , l ength=15)

45 l i n k t o image tag (’project ’ , : border => 0) + " #{ shorten_text(name , length)}"

,

46 { : a c t i on => ’view’ , : c o n t r o l l e r => ’project ’ ,

47 : p r o j e c t => name } ,

48 : t i t l e => "Project #{name} #{title}"

49 end

50

51 de f l ink to mainpage

52 l i n k t o image tag (’start ’ , : border => 0) + ’ back to main page ...’ ,

53 : c o n t r o l l e r => ’statistics ’

54 end

55

56 end

Listing B.20: General webclient Helper
1 # Methods added to this helper will be available to all templates in the

application.

2 module Appl i cat ionHe lper

3

4 de f l i n k t o p r o j e c t p r o j e c t

5 l i n k t o pro j e c t , : c o n t r o l l e r => "project" , : a c t i on => : show ,

6 : p r o j e c t => p r o j e c t

7 end

8

9 de f l i nk t o package pro j e c t , package

10 l i n k t o package , : c o n t r o l l e r => "package" , : a c t i on => : show ,

11 : p r o j e c t => pro j e c t , : package => package

12 end

13

14 de f sho r t en t ex t (text , l ength=15)

15 text = text [0 . . length −1] + ’...’ i f t ex t . l ength > l ength

16 re turn text

17 end

18

19 de f f o c u s i d (id)

20 j a v a s c r i p t t a g (

21 "document.getElementById (’#{id}’).focus ();"

22)

23 end

24

25 de f f o c u s a n d s e l e c t i d (id)

26 j a v a s c r i p t t a g (

27 "document.getElementById (’#{id}’).focus ();" +

28 "document.getElementById (’#{id}’).select ();"

29)

30 end

31

95

96

32 de f m in vo t e s f o r r a t i n g

33 MIN VOTES FOR RATING

34 end

35

36 end

Listing B.21: Frontend controller methods that care for rating
1 de f r a t i ng

2 @package = params [: package]

3 @project = params [: p r o j e c t]

4

5 begin

6 ob j e c t = DbProject . f ind by name @project

7 ob j e c t = DbPackage . f i nd : f i r s t , : c ond i t i on s =>

8 [’name=? AND db_project_id =?’ , @package , ob j e c t . id] i f @package

9 throw i f ob j e c t . n i l ?

10 r e s cue

11 @package = @project = @rating = ob j e c t = n i l

12 re turn

13 end

14

15 i f r eque s t . get ?

16

17 @rating = ob j e c t . r a t i ng (@http user . id)

18

19 e l s i f r eque s t . put ?

20

21 # try to get previous rating of this user for this object

22 p r e v i ou s r a t i n g = Rating . f i nd : f i r s t , : c ond i t i on s => [

23 ’object_type =? AND object_id =? AND user_id =?’ ,

24 ob j e c t . c l a s s . name , ob j e c t . id , @http user . id

25]

26 data = ActiveXML : : Base . new(reque s t . raw post)

27 i f p r e v i ou s r a t i n g

28 # update previous rating

29 p r e v i ou s r a t i n g . s c o r e = data . t o s . t o i

30 p r e v i ou s r a t i n g . save

31 e l s e

32 # create new rating entry

33 begin

34 r a t i ng = Rating . new

35 ra t i ng . s c o r e = data . t o s . t o i

36 r a t i ng . ob j e c t t ype = ob j e c t . c l a s s . name

37 ra t i ng . o b j e c t i d = ob j e c t . id

38 r a t i ng . u s e r i d = @http user . id

39 r a t i ng . save

40 r e s cue

41 r end e r e r r o r : s t a tu s => 400 , : e r r o r code => "error setting rating" ,

42 : message => "rating not saved"

43 re turn

44 end

45 end

46 render ok

47

48 e l s e

49 r end e r e r r o r : s t a tu s => 400 , : e r r o r code => "invalid_method" ,

96

97

50 : message => "only GET or PUT method allowed for this action"

51 end

52 end

53

54

55 de f h i gh e s t r a t ed

56 r a t i n g s = Rating . f i nd : a l l ,

57 : s e l e c t => ’object_id , object_type , count(score) as count ,’ +

58 ’sum(score)/count(score) as score_calculated ’ ,

59 : group => ’object_id , object_type ’ ,

60 : order => ’score_calculated DESC’

61 r a t i n g s = ra t i n g s . d e l e t e i f { | r | r . count . t o i < min vo t e s f o r r a t i n g }
62 @rat ings = ra t i n g s [0 . . @limit −1]

63 end

Listing B.22: Script to create download statistics XML file from the redirector

database
1 #!/usr/bin/env ruby

2 # this script generates a xml file from the ’redirect_stats ’-table

3 # of the opensuse download redirector

4

5 #------------------------------------

6 # CONFIG

7 db host = ’downloadserver.suse.de’

8 db user = ’dbuser ’

9 db pass = ’verysecret ’

10 db name = ’redirector ’

11 db tab l e = ’redirect_stats ’

12 f i l ename = ’redirect_stats.xml’

13 #------------------------------------

14

15 r e qu i r e ’rubygems ’

16 require gem ’activesupport ’

17 require gem ’activerecord ’

18

19 # connect to database

20 ActiveRecord : : Base . e s t a b l i s h c onn e c t i o n (

21 : adapter => ’mysql ’ ,

22 : host => db host ,

23 : username => db user ,

24 : password => db pass ,

25 : database => db name

26)

27

28 # define model for statistics entries

29 c l a s s Red i r e c tS ta t s < ActiveRecord : : Base ; end

30

31 # get all entries from database

32 begin

33 db s ta t s = Red i r e c tS ta t s . f i nd : a l l

34 r e s cue

35 puts "ERROR while getting redirect_stats from database. Abort."

36 e x i t f a l s e

37 end

38

97

98

39 # build nested hash with counters

40 s t a t s = {}
41 db s ta t s . each do | s |
42 s t a t s [s . p r o j e c t] | |= {}
43 s t a t s [s . p r o j e c t] [s . package] | |= {}
44 s t a t s [s . p r o j e c t] [s . package] [s . r e p o s i t o r y] | |= {}
45 s t a t s [s . p r o j e c t] [s . package] [s . r e p o s i t o r y] [s . arch] | |= []

46 s t a t s [s . p r o j e c t] [s . package] [s . r e p o s i t o r y] [s . arch] << s

47 end

48

49 # initialize xml -builder , send result to the xml_output variable

50 xml = Bui lder : : XmlMarkup . new(: t a r g e t => xml output=’’ , : indent => 2)

51

52 # generate xml

53 xml . i n s t r u c t !

54 xml . r e d i r e c t s t a t s do

55 s t a t s . e a ch pa i r do | project name , p r o j e c t |
56

57 xml . p r o j e c t (: name => project name) do

58 p r o j e c t . e a ch pa i r do | package name , package |
59

60 xml . package (: name => package name) do

61 package . ea ch pa i r do | repo name , repo |
62

63 xml . r e p o s i t o r y (: name => repo name) do

64 repo . ea ch pa i r do | arch name , arch |
65

66 xml . arch (: name => arch name) do

67 arch . each do | counter |
68

69 xml . count (

70 counter . count ,

71 : f i l ename => counter . f i l ename ,

72 : f i l e t y p e => counter . f i l e t y p e ,

73 : v e r s i on => counter . ver s ion ,

74 : r e l e a s e => counter . r e l e a s e ,

75 : c r e a t ed a t => counter . c r e a t ed a t . xmlschema ,

76 : counted at => counter . counted at . xmlschema

77)

78

79 end # each_counter

80 end # ’arch’ xml tag

81

82 end # each_arch

83 end # ’repository ’ xml tag

84

85 end # each_repo

86 end # ’package ’ xml tag

87

88 end # each_package

89 end # ’project ’ xml tag

90

91 end # each_project

92 end # outer ’redirect_stats ’ xml tag

93

94 # write xml output to file

95 f i l e = F i l e . new(f i l ename , ’w+’)

98

99

96 f i l e << xml output

97 puts "redirector statistics written as xml file to #{file.path}, size is #{file.

stat.size /1024} Kb."

98 f i l e . c l o s e

Listing B.23: Functional tests implemented in the frontend
1 r e qu i r e F i l e . dirname (FILE) + ’/../ test_helper ’

2 r e qu i r e ’statistics_controller ’

3

4 c l a s s S t a t i s t i c s C o n t r o l l e r ; de f r e s c u e a c t i o n (e) r a i s e e end ; end

5 c l a s s S t a t i s t i c sC on t r o l l e rT e s t < Test : : Unit : : TestCase

6

7 f i x t u r e s : db pro j e c t s , : db packages , : download stats , : r e p o s i t o r i e s , :

a r c h i t e c t u r e s

8

9 de f setup

10 @cont ro l l e r = S t a t i s t i c s C o n t r o l l e r . new

11 @request = Act i onCont ro l l e r : : TestRequest . new

12 @response = Act i onCont ro l l e r : : TestResponse . new

13 end

14

15 de f t e s t l a t e s t a dd e d

16 p r epa r e r eque s t w i th u s e r @request , ’tom’ , ’thunder ’

17 get : l a t e s t added

18 a s s e r t r e s p on s e : s u c c e s s

19 a s s e r t t a g : tag => ’latest_added ’ , : c h i l d => { : tag => ’project ’ }
20 a s s e r t t a g : tag => ’project ’ , : a t t r i b u t e s => {
21 : name => "kde4" ,

22 : c r ea ted => "2008 -04 -28 T05 :05:05+02:00" ,

23 }
24 end

25

26 de f t e s t l a t e s t upda t e d

27 p r epa r e r eque s t w i th u s e r @request , ’tom’ , ’thunder ’

28 get : l a t e s t upda t ed

29 a s s e r t r e s p on s e : s u c c e s s

30 a s s e r t t a g : tag => ’latest_updated ’ , : c h i l d => { : tag => ’project ’ }
31 a s s e r t t a g : tag => ’project ’ , : a t t r i b u t e s => {
32 : name => "kde4" ,

33 : updated => "2008 -04 -28 T06 :06:06+02:00" ,

34 }
35 end

36

37 de f t e s t download counte r

38 p r epa r e r eque s t w i th u s e r @request , ’tom’ , ’thunder ’

39 get : download counter

40 a s s e r t r e s p on s e : s u c c e s s

41 a s s e r t t a g : tag => ’download_counter ’ , : c h i l d => { : tag => ’count ’ }
42 a s s e r t t a g : tag => ’download_counter ’ , : a t t r i b u t e s => { : sum => 9302 }
43 a s s e r t t a g : tag => ’count ’ , : a t t r i b u t e s => {
44 : p r o j e c t => ’Apache ’ ,

45 : package => ’apache2 ’ ,

46 : r e p o s i t o r y => ’SUSE_Linux_10 .1’ ,

47 : a r c h i t e c t u r e => ’x86_64 ’

48 }
49 a s s e r t t a g : tag => ’count ’ , : content => ’4096’

99

100

50 end

51

52 de f te s t download counter group by

53 p r epa r e r eque s t w i th u s e r @request , ’tom’ , ’thunder ’

54 # without project - & package -filter

55 get : download counter , { ’group_by ’ => ’project ’ }
56 a s s e r t r e s p on s e : s u c c e s s

57 a s s e r t t a g : tag => ’download_counter ’ , : c h i l d => { : tag => ’count ’ }
58 a s s e r t t a g : tag => ’download_counter ’ , : a t t r i b u t e s => { : a l l => 9302 }
59 a s s e r t t a g : tag => ’count ’ , : a t t r i b u t e s => {
60 : p r o j e c t => ’Apache ’ , : f i l e s => ’9’

61 } , : content => ’8806’

62 # with project - & package -filter

63 get : download counter , {
64 ’project ’ => ’Apache ’ , ’package ’ => ’apache2 ’ , ’group_by ’ => ’arch’

65 }
66 a s s e r t r e s p on s e : s u c c e s s

67 a s s e r t t a g : tag => ’download_counter ’ , : c h i l d => { : tag => ’count ’ }
68 a s s e r t t a g : tag => ’download_counter ’ ,

69 : a t t r i b u t e s => { : a l l => 9302 }
70 a s s e r t t a g : tag => ’count ’ , : a t t r i b u t e s => {
71 : arch => ’x86_64 ’ , : f i l e s => ’6’

72 } , : content => ’5537’

73 end

74

75 de f t e s t mo s t a c t i v e

76 p r epa r e r eque s t w i th u s e r @request , ’tom’ , ’thunder ’

77 # get most active packages

78 get : most act ive , { : type => ’packages ’ }
79 a s s e r t r e s p on s e : s u c c e s s

80 a s s e r t t a g : tag => ’most_active ’ , : c h i l d => { : tag => ’package ’ }
81 a s s e r t t a g : tag => ’package ’ , : a t t r i b u t e s => {
82 : name => "x11vnc" ,

83 : p r o j e c t => "home:dmayr" ,

84 : update count => 0

85 }
86 # get most active projects

87 get : most act ive , { : type => ’projects ’ }
88 a s s e r t r e s p on s e : s u c c e s s

89 a s s e r t t a g : tag => ’most_active ’ , : c h i l d => { : tag => ’project ’ }
90 a s s e r t t a g : tag => ’project ’ , : a t t r i b u t e s => {
91 : name => "home:dmayr" ,

92 : packages => 1

93 }
94 end

95

96 de f t e s t h i g h e s t r a t e d

97 p r epa r e r eque s t w i th u s e r @request , ’tom’ , ’thunder ’

98 get : h i gh e s t r a t ed

99 a s s e r t r e s p on s e : s u c c e s s

100 end

101 end

Listing B.24: StreamHandler part of the frontend statistics controller to import the

download statistics

100

101

1

2 # StreamHandler for parsing incoming download_stats / redirect_stats (xml)

3 c l a s s StreamHandler

4 inc lude StreamListener

5

6 a t t r a c c e s s o r : e r r o r s

7

8 de f i n i t i a l i z e

9 @errors = []

10 # build hashes for caching id -/name - combinations

11 p r o j e c t s = DbProject . f i nd : a l l , : s e l e c t => ’id , name’

12 packages = DbPackage . f i nd : a l l , : s e l e c t => ’id , name , db_project_id ’

13 repos = Repos i tory . f i nd : a l l , : s e l e c t => ’id , name , db_project_id ’

14 archs = Arch i t e c tu r e . f i nd : a l l , : s e l e c t => ’id , name’

15 @project hash = @package hash = @repo hash = @arch hash = {}
16 p r o j e c t s . each { | p | @project hash [p . name] = p . id }
17 packages . each { | p | @package hash [[p . name , p . db p r o j e c t i d]] = p . id }
18 repos . each { | r | @repo hash [[r . name , r . db p r o j e c t i d]] = r . id }
19 archs . each { | a | @arch hash [a . name] = a . id }
20 end

21

22 de f t a g s t a r t name , a t t r s

23 case name

24 when ’project ’

25 @@project = @project hash [a t t r s [’name’]]

26 when ’package ’

27 @@package = @package hash [[a t t r s [’name’] , @@project]]

28 when ’repository ’

29 @@repo = @repo hash [[a t t r s [’name’] , @@project]]

30 when ’arch’

31 un l e s s @@arch = @arch hash [a t t r s [’name’]]

32 # create new architecture entry (db and hash)

33 arch = Arch i t e c tu r e . new(: name => a t t r s [’name’])

34 arch . save

35 @arch hash [arch . name] = arch . id

36 @@arch = @arch hash [arch . name]

37 end

38 when ’count ’

39 @@count = {
40 : f i l ename => a t t r s [’filename ’] ,

41 : f i l e t y p e => a t t r s [’filetype ’] ,

42 : v e r s i on => a t t r s [’version ’] ,

43 : r e l e a s e => a t t r s [’release ’] ,

44 : c r e a t ed a t => a t t r s [’created_at ’] ,

45 : counted at => a t t r s [’counted_at ’]

46 }
47 end

48 end

49

50 de f t ext (t ext)

51 text . s t r i p !

52 re turn i f t ex t == ’’

53 un l e s s @@project and @@package and @@repo and @@arch and @@count

54 @errors << { : p r o j e c t => @@project , : package => @@package ,

55 : repo => @@repo , : arch => @@arch , : count => @@count }
56 re turn

57 end

101

102

58

59 # try to find existing entry in database

60 ds = DownloadStat . f i nd : f i r s t , : c ond i t i on s => [

61 ’db_project_id =? AND db_package_id =? AND repository_id =? AND ’ +

62 ’architecture_id =? AND filename =? AND filetype =? AND ’ +

63 ’version =? AND download_stats.release =?’ ,

64 @@project , @@package , @@repo , @@arch ,

65 @@count [: f i l ename] , @@count [: f i l e t y p e] ,

66 @@count [: v e r s i on] , @@count [: r e l e a s e]

67]

68 i f ds

69 # entry found , update it if necessary ...

70 i f ds . count . t o i != text . t o i

71 ds . count = text

72 ds . counted at = @@count [: counted at]

73 ds . save

74 end

75 e l s e

76 # create new entry - we do this directly per sql statement , because

77 # that’s much faster than through ActiveRecord objects

78 DownloadStat . connect ion . i n s e r t "\

79 INSERT INTO download_stats (\

80 ‘db_project_id ‘, ‘db_package_id ‘, ‘repository_id ‘, ‘architecture_id ‘,\

81 ‘filename ‘, ‘filetype ‘, ‘version ‘, ‘release ‘,\

82 ‘counted_at ‘, ‘created_at ‘, ‘count ‘\

83) VALUES (\

84 ’#{ @@project}’, ’#{ @@package}’, ’#{@@repo}’, ’#{@@arch}’,\

85 ’#{@@count [: filename]}’, ’#{@@count [: filetype]}’,\

86 ’#{@@count [: version]}’, ’#{@@count [: release]}’,\

87 ’#{@@count [: counted_at]}’, ’#{@@count [: created_at]}’,\

88 ’#{text}’\

89)" , "Creating DownloadStat entry: "

90 end

91 end

92 end

Listing B.25: The complete frontend statistics controller
1

2 r e qu i r e ’rexml/document ’

3 r e qu i r e "rexml/streamlistener"

4

5 c l a s s S t a t i s t i c s C o n t r o l l e r < App l i c a t i onCont r o l l e r

6

7

8 b e f o r e f i l t e r : g e t l im i t , : only => [

9 : h i ghe s t r a t ed , : most act ive , : l a t e s t added , : l a t e s t updated ,

10 : l a t e s t b u i l t , : download counter

11]

12

13 ca che s a c t i on : h i ghe s t r a t ed , : most act ive , : l a t e s t added , : l a t e s t updated ,

14 : l a t e s t b u i l t , : download counter

15

16 v a l i d a t e a c t i o n : r e d i r e c t s t a t s => : r e d i r e c t s t a t s

17

18

19 # StreamHandler for parsing incoming download_stats / redirect_stats (xml)

102

103

20 c l a s s StreamHandler

21 inc lude REXML: : StreamListener

22

23 a t t r a c c e s s o r : e r r o r s

24

25 de f i n i t i a l i z e

26 @errors = []

27 # build hashes for caching id -/name - combinations

28 p r o j e c t s = DbProject . f i nd : a l l , : s e l e c t => ’id , name’

29 packages = DbPackage . f i nd : a l l , : s e l e c t => ’id , name , db_project_id ’

30 repos = Repos i tory . f i nd : a l l , : s e l e c t => ’id , name , db_project_id ’

31 archs = Arch i t e c tu r e . f i nd : a l l , : s e l e c t => ’id , name’

32 @project hash = @package hash = @repo hash = @arch hash = {}
33 p r o j e c t s . each { | p | @project hash [p . name] = p . id }
34 packages . each { | p | @package hash [[p . name , p . db p r o j e c t i d]] = p . id }
35 repos . each { | r | @repo hash [[r . name , r . db p r o j e c t i d]] = r . id }
36 archs . each { | a | @arch hash [a . name] = a . id }
37 end

38

39 de f t a g s t a r t name , a t t r s

40 case name

41 when ’project ’

42 @@project name = a t t r s [’name’]

43 @@project id = @project hash [a t t r s [’name’]]

44 when ’package ’

45 @@package name = a t t r s [’name’]

46 @@package id = @package hash [[a t t r s [’name’] , @@project id]]

47 when ’repository ’

48 @@repo name = a t t r s [’name’]

49 @@repo id = @repo hash [[a t t r s [’name’] , @@project id]]

50 when ’arch’

51 @@arch name = a t t r s [’name’]

52 un l e s s @@arch id = @arch hash [a t t r s [’name’]]

53 # create new architecture entry (db and hash)

54 arch = Arch i t e c tu r e . new(: name => a t t r s [’name’])

55 arch . save

56 @arch hash [arch . name] = arch . id

57 @@arch id = @arch hash [arch . name]

58 end

59 when ’count ’

60 @@count = {
61 : f i l ename => a t t r s [’filename ’] ,

62 : f i l e t y p e => a t t r s [’filetype ’] ,

63 : v e r s i on => a t t r s [’version ’] ,

64 : r e l e a s e => a t t r s [’release ’] ,

65 : c r e a t ed a t => a t t r s [’created_at ’] ,

66 : counted at => a t t r s [’counted_at ’]

67 }
68 end

69 end

70

71 de f t ext (t ext)

72 text . s t r i p !

73 re turn i f t ex t == ’’

74 un l e s s @@project id and @@package id and @@repo id and @@arch id and @@count

75 @errors << {
76 : p r o j e c t i d => @@project id , : project name => @@project name ,

103

104

77 : package id => @@package id , : package name => @@package name ,

78 : r epo id => @@repo id , : repo name => @@repo name ,

79 : a r ch id => @@arch id , : arch name => @@arch name , : count => @@count

80 }
81 re turn

82 end

83

84 # lower the log level , prevent spamming the logfile

85 o l d l o g l e v e l = DownloadStat . l o gg e r . l e v e l

86 DownloadStat . l o gg e r . l e v e l = Logger : :ERROR

87

88 # try to find existing entry in database

89 ds = DownloadStat . f i nd : f i r s t , : c ond i t i on s => [

90 ’db_project_id =? AND db_package_id =? AND repository_id =? AND ’ +

91 ’architecture_id =? AND filename =? AND filetype =? AND ’ +

92 ’version =? AND download_stats.release =?’ ,

93 @@project id , @@package id , @@repo id , @@arch id ,

94 @@count [: f i l ename] , @@count [: f i l e t y p e] ,

95 @@count [: v e r s i on] , @@count [: r e l e a s e]

96]

97 i f ds

98 # entry found , update it if necessary ...

99 i f ds . count . t o i != text . t o i

100 ds . count = text

101 ds . counted at = @@count [: counted at]

102 ds . save

103 end

104 e l s e

105 # create new entry - we do this directly per sql statement , because

106 # that’s much faster than through ActiveRecord objects

107 DownloadStat . connect ion . i n s e r t "\

108 INSERT INTO download_stats (\

109 ‘db_project_id ‘, ‘db_package_id ‘, ‘repository_id ‘, ‘architecture_id ‘,\

110 ‘filename ‘, ‘filetype ‘, ‘version ‘, ‘release ‘,\

111 ‘counted_at ‘, ‘created_at ‘, ‘count ‘\

112) VALUES (\

113 ’#{ @@project_id}’, ’#{ @@package_id}’, ’#{ @@repo_id}’, ’#{ @@arch_id}’,\

114 ’#{@@count [: filename]}’, ’#{@@count [: filetype]}’,\

115 ’#{@@count [: version]}’, ’#{@@count [: release]}’,\

116 ’#{@@count [: counted_at]}’, ’#{@@count [: created_at]}’,\

117 ’#{text}’\

118)" , "Creating DownloadStat entry: "

119 end

120

121 # reset the log level

122 DownloadStat . l o gg e r . l e v e l = o l d l o g l e v e l

123 end

124 end

125

126

127

128

129 de f index

130 text = "This is the statistics controller.
"

131 text += "See the api documentation for details."

132 render : t ex t => t ext

133 end

104

105

134

135

136 de f h i gh e s t r a t ed

137 # set automatic action_cache expiry time limit

138 response . t im e t o l i v e = 10 . minutes

139

140 r a t i n g s = Rating . f i nd : a l l ,

141 : s e l e c t => ’object_id , object_type , count(score) as count ,’ +

142 ’sum(score)/count(score) as score_calculated ’ ,

143 : group => ’object_id , object_type ’ ,

144 : order => ’score_calculated DESC’

145 r a t i n g s = ra t i n g s . d e l e t e i f { | r | r . count . t o i < min vo t e s f o r r a t i n g }
146 @rat ings = ra t i n g s [0 . . @limit −1]

147 end

148

149

150 de f r a t i ng

151 @package = params [: package]

152 @project = params [: p r o j e c t]

153

154 begin

155 ob j e c t = DbProject . f ind by name @project

156 ob j e c t = DbPackage . f i nd : f i r s t , : c ond i t i on s =>

157 [’name=? AND db_project_id =?’ , @package , ob j e c t . id] i f @package

158 throw i f ob j e c t . n i l ?

159 r e s cue

160 @package = @project = @rating = ob j e c t = n i l

161 re turn

162 end

163

164 i f r eque s t . get ?

165

166 @rating = ob j e c t . r a t i ng (@http user . id)

167

168 e l s i f r eque s t . put ?

169

170 # try to get previous rating of this user for this object

171 p r e v i ou s r a t i n g = Rating . f i nd : f i r s t , : c ond i t i on s => [

172 ’object_type =? AND object_id =? AND user_id =?’ ,

173 ob j e c t . c l a s s . name , ob j e c t . id , @http user . id

174]

175 data = ActiveXML : : Base . new(reque s t . raw post)

176 i f p r e v i ou s r a t i n g

177 # update previous rating

178 p r e v i ou s r a t i n g . s c o r e = data . t o s . t o i

179 p r e v i ou s r a t i n g . save

180 e l s e

181 # create new rating entry

182 begin

183 ra t i ng = Rating . new

184 ra t i ng . s c o r e = data . t o s . t o i

185 r a t i ng . ob j e c t t ype = ob j e c t . c l a s s . name

186 ra t i ng . o b j e c t i d = ob j e c t . id

187 r a t i ng . u s e r i d = @http user . id

188 r a t i ng . save

189 re s cue

190 r end e r e r r o r : s t a tu s => 400 , : e r r o r code => "error setting rating" ,

105

106

191 : message => "rating not saved"

192 re turn

193 end

194 end

195 render ok

196

197 e l s e

198 r end e r e r r o r : s t a tu s => 400 , : e r r o r code => "invalid_method" ,

199 : message => "only GET or PUT method allowed for this action"

200 end

201 end

202

203

204 de f download counter

205 # set automatic action_cache expiry time limit

206 response . t im e t o l i v e = 30 . minutes

207

208 # initialize @stats

209 @stats = []

210

211 # get total count of all downloads

212 @al l = DownloadStat . f i nd (: f i r s t , : s e l e c t => ’sum(count) as sum’) . sum

213 @al l = 0 un l e s s @al l

214

215 # get timestamp of first counted entry

216 time = DownloadStat . f i nd (: f i r s t , : s e l e c t => ’min(created_at) as ts’) . t s

217 time ? @ f i r s t = Time . parse (time) . xmlschema : @ f i r s t = Time . now . xmlschema

218

219 # get timestamp of last counted entry

220 time = DownloadStat . f i nd (: f i r s t , : s e l e c t => ’max(counted_at) as ts’) . t s

221 time ? @last = Time . parse (time) . xmlschema : @last = Time . now . xmlschema

222

223 i f @group by mode = params [: group by]

224 # if in group_by_mode , then we concatenate download_stats entries

225

226 # generate parts of the sql statement

227 case @group by mode

228 when ’project ’

229 from = ’db_projects pro’

230 s e l e c t = ’pro.name as obj_name ’

231 group by = ’db_project_id ’

232 cond i t i on s = ’ds.db_project_id=pro.id’

233 when ’package ’

234 from = ’db_packages pac , db_projects pro’

235 s e l e c t = ’pac.name as obj_name , pro.name as pro_name ’

236 group by = ’db_package_id ’

237 cond i t i on s = ’ds.db_package_id=pac.id AND ds.db_project_id=pro.id’

238 when ’repo’

239 from = ’repositories repo , db_projects pro’

240 s e l e c t = ’repo.name as obj_name , pro.name as pro_name ’

241 group by = ’repository_id ’

242 cond i t i on s = ’ds.repository_id=repo.id AND ds.db_project_id=pro.id’

243 when ’arch’

244 from = ’architectures arch’

245 s e l e c t = ’arch.name as obj_name ’

246 group by = ’architecture_id ’

247 cond i t i on s = ’ds.architecture_id=arch.id’

106

107

248 e l s e

249 @cstats = n i l

250 re turn

251 end

252

253 # execute the sql query

254 @stats = DownloadStat . f i nd : a l l ,

255 : from => ’download_stats ds , ’ + from ,

256 : s e l e c t => ’ds.*, ’ + s e l e c t + ’, ’ +

257 ’sum(ds.count) as counter_sum , count(ds.id) as files_count ’ ,

258 : c ond i t i on s => cond i t i ons ,

259 : order => ’counter_sum DESC , files_count ASC’ ,

260 : group => group by ,

261 : l im i t => @limit

262

263 e l s e

264 # we are not in group_by_mode , so we return full download_stats data

265

266 # get objects

267 pr j = DbProject . f ind by name params [: p r o j e c t]

268 pac = DbPackage . f i nd : f i r s t , : c ond i t i on s => [

269 ’name=? AND db_project_id =?’ , params [: package] , p r j . id

270] i f p r j

271 repo = Repos i tory . f i nd : f i r s t , : c ond i t i on s => [

272 ’name=? AND db_project_id =?’ , params [: repo] , p r j . id

273] i f p r j

274 arch = Arch i t e c tu r e . f ind by name params [: arch]

275

276 # return immediately , if any object is invalid / not found

277 re turn i f not p r j and not params [: p r o j e c t] . n i l ?

278 re turn i f not pac and not params [: package] . n i l ?

279 re turn i f not repo and not params [: repo] . n i l ?

280 re turn i f not arch and not params [: arch] . n i l ?

281

282 # create filter , if parameters given & objects found

283 f i l t e r = ’’

284 f i l t e r += " AND ds.db_project_id =#{ prj.id}" i f p r j

285 f i l t e r += " AND ds.db_package_id =#{ pac.id}" i f pac

286 f i l t e r += " AND ds.repository_id =#{ repo.id}" i f repo

287 f i l t e r += " AND ds.architecture_id =#{ arch.id}" i f arch

288

289 # get download_stats entries

290 @stats = DownloadStat . f i nd : a l l ,

291 : from => ’download_stats ds , db_projects pro , db_packages pac , ’ +

292 ’architectures arch , repositories repo’ ,

293 : s e l e c t => ’ds.*, pro.name as pro_name , pac.name as pac_name , ’ +

294 ’arch.name as arch_name , repo.name as repo_name ’ ,

295 : c ond i t i on s => ’ds.db_project_id=pro.id AND ds.db_package_id=pac.id’ +

296 ’ AND ds.architecture_id=arch.id AND ds.repository_id=repo.id’ +

297 f i l t e r ,

298 : order => ’ds.count DESC’ ,

299 : l im i t => @limit

300

301 # get sum of counts

302 @sum = DownloadStat . f i nd (: f i r s t ,

303 : from => ’download_stats ds’ ,

304 : s e l e c t => ’sum(count) as overall_counter ’ ,

107

108

305 : c ond i t i on s => ’1=1’ + f i l t e r

306) . o v e r a l l c o un t e r

307 end

308 end

309

310

311 de f r e d i r e c t s t a t s

312

313 # check permissions

314 un l e s s pe rmi s s i ons . s e t download counter s

315 r end e r e r r o r : s t a tu s => 403 , : e r r o r code => "permission denied" ,

316 : message => "download counters cannot be set , insufficient permissions"

317 re turn

318 end

319

320 # get download statistics from redirector as xml

321 i f r eque s t . put ?

322 data = reques t . raw post

323

324 # parse the data

325 streamhandler = StreamHandler . new

326 l ogg e r . debug "download_stats import starts now ..."

327 REXML: : Document . parse s t ream (data , streamhandler)

328 l o gg e r . debug "download_stats import is finished."

329

330 i f streamhandler . e r r o r s

331 l o gg e r . debug "prepare download_stats warning message ..."

332 e r r count = streamhandler . e r r o r s . l ength

333 dayofweek = Time . now . s t r f t im e (’%u’)

334 l o g f i l e = "log/download_statistics_import_warnings -#{ dayofweek }.log"

335 msg = "WARNING: #{ err_count} redirect_stats were not imported .\n"

336 msg += "(for details see logfile #{ logfile })"

337

338 f = F i l e . open l o g f i l e , ’w’

339 streamhandler . e r r o r s . each do | e |
340 f << "project: #{e[: project_name]}=#{e[: project_id] or ’*UNKNOWN*’} "

341 f << "package: #{e[: package_name]}=#{e[: package_id] or ’*UNKNOWN*’} "

342 f << "repo: #{e[: repo_name]}=#{e[: repo_id] or ’*UNKNOWN*’} "

343 f << "arch: #{e[: arch_name]}=#{e[: arch_id] or ’*UNKNOWN *’}\t"

344 f << "(#{e[:count][: filename]}:#{e[:count][: version]}:"

345 f << "#{e[:count][: release]}:#{e[:count][: filetype]})\n"

346 end

347 f . c l o s e

348

349 l ogg e r . warn "\n\n#{msg}\n\n"

350 render ok msg # render_ok with msg text in details

351 e l s e

352 render ok

353 end

354

355 e l s e

356 r end e r e r r o r : s t a tu s => 400 , : e r r o r code => "only_put_method_allowed" ,

357 : message => "only PUT method allowed for this action"

358 l ogg e r . debug "Tried to access download_stats via ’#{request.method}’ - not

allowed!"

359 re turn

360 end

108

109

361 end

362

363

364 de f most ac t ive

365 # set automatic action_cache expiry time limit

366 response . t im e t o l i v e = 30 . minutes

367

368 @type = params [: type] or @type = ’packages ’

369

370 i f @type == ’projects ’

371 # get all packages including activity values

372 @packages = DbPackage . f i nd : a l l ,

373 : from => ’db_packages pac , db_projects pro’ ,

374 : c ond i t i on s => ’pac.db_project_id = pro.id’ ,

375 : s e l e c t => ’pac.*, pro.name AS project_name ,’ +

376 "(#{ DbPackage.activity_algorithm}) AS act_tmp ," +

377 ’IF(@activity <0, 0, @activity) AS activity_value ’

378 # count packages per project and sum up activity values

379 p r o j e c t s = {}
380 @packages . each do | package |
381 pro = package . project name

382 p r o j e c t s [pro] | |= { : count => 0 , : sum => 0 }
383 p r o j e c t s [pro] [: count] += 1

384 p r o j e c t s [pro] [: sum] += package . a c t i v i t y v a l u e . t o f

385 end

386 # calculate average activity of packages per project

387 p r o j e c t s . each key do | pro |
388 p r o j e c t s [pro] [: a c t i v i t y] = p r o j e c t s [pro] [: sum] / p r o j e c t s [pro] [: count]

389 end

390 # sort by activity

391 @projects = p r o j e c t s . s o r t do | a , b |
392 b [1] [: a c t i v i t y] <=> a [1] [: a c t i v i t y]

393 end

394 # apply limit

395 @projects = @projects [0 . . @limit −1]

396

397 e l s i f @type == ’packages ’

398 # get all packages including activity values

399 @packages = DbPackage . f i nd : a l l ,

400 : from => ’db_packages pac , db_projects pro’ ,

401 : c ond i t i on s => ’pac.db_project_id = pro.id’ ,

402 : order => ’activity_value DESC’ ,

403 : l im i t => @limit ,

404 : s e l e c t => ’pac.*, pro.name AS project_name ,’ +

405 "(#{ DbPackage.activity_algorithm}) AS act_tmp ," +

406 ’IF(@activity <0, 0, @activity) AS activity_value ’

407 end

408 end

409

410

411 de f a c t i v i t y

412 @project = DbProject . f ind by name params [: p r o j e c t]

413 @package = DbPackage . f i nd : f i r s t , : c ond i t i on s => [

414 ’name=? AND db_project_id =?’ , params [: package] , @project . id] i f @project

415 end

416

417

109

110

418 de f l a t e s t added

419 # set automatic action_cache expiry time limit

420 response . t im e t o l i v e = 5 . minutes

421

422 packages = DbPackage . f i nd : a l l ,

423 : from => ’db_packages pac , db_projects pro’ ,

424 : s e l e c t => ’pac.name , pac.created_at , pro.name AS project_name ’ ,

425 : c ond i t i on s => ’pro.id = pac.db_project_id ’ ,

426 : order => ’created_at DESC , name’ , : l im i t => @limit

427 p r o j e c t s = DbProject . f i nd : a l l ,

428 : s e l e c t => ’name , created_at ’ ,

429 : order => ’created_at DESC , name’ , : l im i t => @limit

430

431 l i s t = []

432 p r o j e c t s . each { | p r o j e c t | l i s t << p r o j e c t }
433 packages . each { | package | l i s t << package }
434 l i s t . s o r t ! { | a , b | b . c r e a t ed a t <=> a . c r e a t ed a t }
435

436 @ l i s t = l i s t [0 . . @limit −1]

437 end

438

439

440 de f added timestamp

441 @project = DbProject . f ind by name (params [: p r o j e c t])

442 @package = DbPackage . f i nd (: f i r s t , : c ond i t i on s =>

443 [’name=? AND db_project_id =?’ , params [: package] , @project . id]

444) i f @project

445 end

446

447

448 de f l a t e s t upda t ed

449 # set automatic action_cache expiry time limit

450 response . t im e t o l i v e = 5 . minutes

451

452 packages = DbPackage . f i nd : a l l ,

453 : from => ’db_packages pac , db_projects pro’ ,

454 : s e l e c t => ’pac.name , pac.updated_at , pro.name AS project_name ’ ,

455 : c ond i t i on s => ’pro.id = pac.db_project_id ’ ,

456 : order => ’updated_at DESC , name’ , : l im i t => @limit

457 p r o j e c t s = DbProject . f i nd : a l l ,

458 : s e l e c t => ’name , updated_at ’ ,

459 : order => ’updated_at DESC , name’ , : l im i t => @limit

460

461 l i s t = []

462 p r o j e c t s . each { | p r o j e c t | l i s t << p r o j e c t }
463 packages . each { | package | l i s t << package }
464 l i s t . s o r t ! { | a , b | b . updated at <=> a . updated at }
465

466 @ l i s t = l i s t [0 . . @limit −1]

467 end

468

469

470 de f updated timestamp

471 @project = DbProject . f ind by name (params [: p r o j e c t])

472 @package = DbPackage . f i nd (: f i r s t , : c ond i t i on s =>

473 [’name=? AND db_project_id =?’ , params [: package] , @project . id]

474) i f @project

110

111

475 end

476

477

478 de f g l oba l c oun t e r s

479 @users = User . f i nd (: f i r s t ,

480 : s e l e c t => ’count(id) AS count ’ , : c ond i t i on s => ’state =2’

481) . count

482 @repos = Repos i tory . f i nd (: f i r s t , : s e l e c t => ’count(id) AS count ’) . count

483 @pro jects = DbProject . f i nd (: f i r s t , : s e l e c t => ’count(id) AS count ’) . count

484 @packages = DbPackage . f i nd (: f i r s t , : s e l e c t => ’count(id) AS count ’) . count

485 end

486

487

488 de f l a t e s t b u i l t

489 # set automatic action_cache expiry time limit

490 response . t im e t o l i v e = 10 . minutes

491

492 # TODO: implement or decide to abolish this functionality

493 end

494

495

496 de f g e t l im i t

497 @l imit = 10 i f (@l imit = params [: l im i t] . t o i) == 0

498 end

499

500

501 de f randomize timestamps

502

503 # ONLY enable on test -/ development database!

504 # it will randomize created/updated timestamps of ALL packages/projects!

505 # this should NOT be enabled for prodution data!

506 enable = f a l s e

507 #

508

509 i f enable

510

511 # deactivate automatic timestamps for this action

512 ActiveRecord : : Base . record t imestamps = f a l s e

513

514 p r o j e c t s = DbProject . f i nd (: a l l)

515 packages = DbPackage . f i nd (: a l l)

516

517 p r o j e c t s . each do | p r o j e c t |
518 date min = Time . utc 2005 , 9

519 date max = Time . now

520 d a t e d i f f = (date max − date min) . t o i

521 t = [(date min + rand (d a t e d i f f)) , (date min + rand (d a t e d i f f))]

522 t . s o r t !

523 p r o j e c t . c r e a t ed a t = t [0]

524 p r o j e c t . updated at = t [1]

525 i f p r o j e c t . save

526 l ogg e r . debug "Project #{ project.name} got new timestamps"

527 e l s e

528 l ogg e r . debug "Project #{ project.name} : ERROR setting timestamps"

529 end

530 end

531

111

112

532 packages . each do | package |
533 date min = Time . utc 2005 , 6

534 date max = Time . now − 36000

535 d a t e d i f f = (date max − date min) . t o i

536 t = [(date min + rand (d a t e d i f f)) , (date min + rand (d a t e d i f f))]

537 t . s o r t !

538 package . c r e a t ed a t = t [0]

539 package . updated at = t [1]

540 i f package . save

541 l ogg e r . debug "Package #{ package.name} got new timestamps"

542 e l s e

543 l ogg e r . debug "Package #{ package.name} : ERROR setting timestamps"

544 end

545 end

546

547 # re -activate automatic timestamps

548 ActiveRecord : : Base . record t imestamps = true

549

550 render : t ex t => "ok , done randomizing all timestams."

551 re turn

552 e l s e

553 l ogg e r . debug "tried to execute randomize_timestamps , but it’s not enabled!"

554 render : t ex t => "this action is deactivated."

555 re turn

556 end

557

558 end

559

560

561 end

112

C Bibliography

[Act07a] “Action Cache Plugin website,” 2007, [accessed 24-July-2007]. [Online].

Available: http://blog.craz8.com/action-cache-plugin

[Act07b] “Action Pack – On rails from request to response,” 2007, [accessed

9-July-2007]. [Online]. Available: http://ap.rubyonrails.com/

[Aja07] “Adaptive path – Ajax: a new approach to web applications,” 2007,

[accessed 16-June-2007]. [Online]. Available: http://www.adaptivepath.

com/publications/essays/archives/000385.php

[Ama07] “Amazon Webservices,” 2007, [accessed 16-June-2007]. [Online]. Available:

http://www.amazon.com/gp/browse.html?node=3435361

[Arc07] “Architectural Patterns,” 2007, [accessed 9-July-2007]. [Online]. Available:

http://www.answers.com/topic/architectural-pattern

[Bro07] “Gaels training manuals,” 2007, [accessed 14-April-2007]. [Online].

Available: http://gaels.lib.strath.ac.uk/forensic/module1/unit1 4/other4.

html

[Bui07] “openSUSE Build Service Startpage,” 2007, [accessed 15-April-2007].

[Online]. Available: http://build.opensuse.org

[Cap07a] “Capistrano: Automating Application Deployment,” 2007, [accessed

1-July-2007]. [Online]. Available: http://manuals.rubyonrails.com/read/

book/17

[Cap07b] “Capistrano Online Book,” 2007, [accessed 23-June-2007]. [Online].

Available: http://manuals.rubyonrails.com/read/book/17

[Cap07c] “Capistrano Homepage,”2007, [accessed 8-April-2007]. [Online]. Available:

http://www.capify.org/

[Dav05] Dave Thomas, Agile Web Development with Rails. The Pragmatic Pro-

grammers, 2005.

113

http://blog.craz8.com/action-cache-plugin
http://ap.rubyonrails.com/
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.adaptivepath.com/publications/essays/archives/000385.php
http://www.amazon.com/gp/browse.html?node=3435361
http://www.answers.com/topic/architectural-pattern
http://gaels.lib.strath.ac.uk/forensic/module1/unit1_4/other4.html
http://gaels.lib.strath.ac.uk/forensic/module1/unit1_4/other4.html
http://build.opensuse.org
http://manuals.rubyonrails.com/read/book/17
http://manuals.rubyonrails.com/read/book/17
http://manuals.rubyonrails.com/read/book/17
http://www.capify.org/

C Bibliography 114

[Deb07] “Debian Linux Homepage,” 2007, [accessed 7-June-2007]. [Online].

Available: http://debian.org/

[eBa07] “eBay Webservices,” 2007, [accessed 12-June-2007]. [Online]. Available:

http://developer.ebay.com/

[Ecl07] “Eclipse IDE Homepage,” 2007, [accessed 1-June-2007]. [Online]. Available:

http://www.eclipse.org/

[Fed07] “Fedora Linux Homepage,” 2007, [accessed 19-June-2007]. [Online].

Available: http://fedoraproject.org/

[Fli07] “Flickr Webservices,” 2007, [accessed 20-May-2007]. [Online]. Available:

http://flickr.com/services

[Goo07] “Google Webservices,” 2007, [accessed 13-June-2007]. [Online]. Available:

http://code.google.com/apis

[iCh07] “Novell iChain Product Homepage,” 2007, [accessed 5-April-2007]. [Online].

Available: http://www.novell.com/en-us/products/ichain/index.html

[Lib07] “LibXML for Ruby Homepage,” 2007, [accessed 18-June-2007]. [Online].

Available: http://libxml.rubyforge.org/

[Mig07a] “ActiveRecord / Migration API Documentation,” 2007, [accessed

15-April-2007]. [Online]. Available: http://api.rubyonrails.com/classes/

ActiveRecord/Migration.html

[Mig07b] “Rails Migrations,” 2007, [accessed 23-April-2007]. [Online]. Available:

http://www.recentrambles.com/pragmatic/view/51

[Nat04] National Information Standards Organization, “Understanding Metadata,”

NISO Press, 2004.

[Oet07] T. Oetiker, “RRDtool,” 2007, [accessed 1-July-2007]. [Online]. Available:

http://oss.oetiker.ch/rrdtool/

[Ope07a] “openSUSE website,” 2007, [accessed 2-April-2007]. [Online]. Available:

http://www.opensuse.org/

[Ope07b] “openSUSE Build Service API,” 2007, [accessed 13-April-2007]. [Online].

Available: https://api.opensuse.org

[Ope07c] “openSUSE Build Service API Documentation,” 2007, [accessed 21-April-

2007]. [Online]. Available: https://api.opensuse.org/apidocs

114

http://debian.org/
http://developer.ebay.com/
http://www.eclipse.org/
http://fedoraproject.org/
http://flickr.com/services
http://code.google.com/apis
http://www.novell.com/en-us/products/ichain/index.html
http://libxml.rubyforge.org/
http://api.rubyonrails.com/classes/ActiveRecord/Migration.html
http://api.rubyonrails.com/classes/ActiveRecord/Migration.html
http://www.recentrambles.com/pragmatic/view/51
http://oss.oetiker.ch/rrdtool/
http://www.opensuse.org/
https://api.opensuse.org
https://api.opensuse.org/apidocs

C Bibliography 115

[Ope07d] “openSUSE download,” 2007, [accessed 21-May-2007]. [Online]. Available:

http://download.opensuse.org/

[Pet04] Peter W. Lount, What is Smalltalk, 16 Aug. 2004,

http://www.smalltalk.org/smalltalk/whatissmalltalk.html.

[Pol07] “Rails Wiki: polymorphic associations,” 2007, [accessed 3-May-

2007]. [Online]. Available: http://wiki.rubyonrails.org/rails/pages/

UnderstandingPolymorphicAssociations

[QtT07] “Trolltech qt product homepage,” 2007, [accessed 24-June-2007]. [Online].

Available: http://trolltech.com/products/qt

[Rai07] “Ruby on Rails API Documentation,” 2007, [accessed 21-April-2007].

[Online]. Available: http://api.rubyonrails.org/

[Ric07] “Build Service RichClient Screenshots,” 2007, [accessed 10-July-2007].

[Online]. Available: http://jarpack.net/images/nbs/

[Roy00] Roy Thomas Fielding, “Architectural Styles and the Design of Network-

based Software Architectures,” Doctoral dissertation, University of Califor-

nia, Irvine, 2000.

[Rub07] “RubyGems Manuals,” 2007, [accessed 1-July-2007]. [Online]. Available:

http://rubygems.org/read/book/1

[Sou07] “Source Forge Homepage,” 2007, [accessed 14-April-2007]. [Online].

Available: http://sourceforge.net

[Str07] “Generic xml stream parser api,” 2007, [accessed 21-June-2007].

[Online]. Available: http://www.mulberrytech.com/Extreme/Proceedings/

html/2004/Gorman01/EML2004Gorman01.html

[SVN07] “Subversion Homepage,”2007, [accessed 19-June-2007]. [Online]. Available:

http://subversion.tigris.org/

[Try79] Trygve Reenskaug, Thing-Model-View-Editor an Example from a plan-

ningsystem, 12 1979, http://heim.ifi.uio.no/ trygver/1979/mvc-1/1979-05-

MVC.pdf.

[Ubu07] “Ubuntu Linux Homepage,” 2007, [accessed 30-June-2007]. [Online].

Available: http://www.ubuntu.com/

[Vim07a] “Vim Homepage,” 2007, [accessed 16-June-2007]. [Online]. Available:

http://www.vim.org

115

http://download.opensuse.org/
http://wiki.rubyonrails.org/rails/pages/UnderstandingPolymorphicAssociations
http://wiki.rubyonrails.org/rails/pages/UnderstandingPolymorphicAssociations
http://trolltech.com/products/qt
http://api.rubyonrails.org/
http://jarpack.net/images/nbs/
http://rubygems.org/read/book/1
http://sourceforge.net
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Gorman01/EML2004Gorman01.html
http://www.mulberrytech.com/Extreme/Proceedings/html/2004/Gorman01/EML2004Gorman01.html
http://subversion.tigris.org/
http://www.ubuntu.com/
http://www.vim.org

C Bibliography 116

[Vim07b] “Vim Project Plugin,” 2007, [accessed 21-May-2007]. [Online]. Available:

http://www.vim.org/scripts/script.php?script id=69

[W3C07] “W3C Homepage,” 2007, [accessed 27-April-2007]. [Online]. Available:

http://www.w3.org/

[Wik07a] “Capistrano — Wikipedia, The Free Encyclopedia,” 2007, [accessed

1-July-2007]. [Online]. Available: http://en.wikipedia.org/w/index.php?

title=Capistrano&oldid=140465284

[Wik07b] “DBMS — Wikipedia, The Free Encyclopedia,” 2007, [accessed 1-July-

2007]. [Online]. Available: http://en.wikipedia.org/w/index.php?title=

Database management system&oldid=143431413

[Wik07c] “Emacs — Wikipedia, The Free Encyclopedia,” 2007, [accessed 1-July-

2007]. [Online]. Available: http://en.wikipedia.org/wiki/Emacs?oldid=

142270680

[Wik07d] “SAX — Wikipedia, The Free Encyclopedia,” 2007, [accessed 1-July-

2007]. [Online]. Available: http://de.wikipedia.org/wiki/Simple API for

XML?oldid=34051357

[Wik07e] “Statistics — Wikipedia, The Free Encyclopedia,” 2007, [accessed

1-July-2007]. [Online]. Available: http://en.wikipedia.org/wiki/Statistics?

oldid=143370619

[Wik07f] “Subversion — Wikipedia, The Free Encyclopedia,” 2007, [accessed 1-

July-2007]. [Online]. Available: http://en.wikipedia.org/wiki/Subversion

%28software%29?oldid=143349092

[Wik07g] “Vim — Wikipedia, The Free Encyclopedia,” 2007, [accessed 1-July-

2007]. [Online]. Available: http://en.wikipedia.org/wiki/Vim %28text

editor%29?oldid=142905941

116

http://www.vim.org/scripts/script.php?script_id=69
http://www.w3.org/
http://en.wikipedia.org/w/index.php?title=Capistrano&oldid=140465284
http://en.wikipedia.org/w/index.php?title=Capistrano&oldid=140465284
http://en.wikipedia.org/w/index.php?title=Database_management_system&oldid=143431413
http://en.wikipedia.org/w/index.php?title=Database_management_system&oldid=143431413
http://en.wikipedia.org/wiki/Emacs?oldid=142270680
http://en.wikipedia.org/wiki/Emacs?oldid=142270680
http://de.wikipedia.org/wiki/Simple_API_for_XML?oldid=34051357
http://de.wikipedia.org/wiki/Simple_API_for_XML?oldid=34051357
http://en.wikipedia.org/wiki/Statistics?oldid=143370619
http://en.wikipedia.org/wiki/Statistics?oldid=143370619
http://en.wikipedia.org/wiki/Subversion_%28software%29?oldid=143349092
http://en.wikipedia.org/wiki/Subversion_%28software%29?oldid=143349092
http://en.wikipedia.org/wiki/Vim_%28text_editor%29?oldid=142905941
http://en.wikipedia.org/wiki/Vim_%28text_editor%29?oldid=142905941

D Curriculum vitae

David Mayr was born at the 28th of April 1979 in Obergünzburg, Germany.

school education

1985-1987 primary school Börwang

1987-1990 primary school Haldenwang

1990-1999 secondary school Marianum Buxheim near Memmingen

community service

1999-2000 Stiftsklinik, Bad Grönenbach

vocational training

08.2000-01.2003

Fachinformatiker/ FR Systemintegration, Systemhaus Abele Informatik

professional activity

02.2003-09.2003

Systemhaus Abele Informatik as Fachinformatiker

scholastic

09.2003-02.2007

nta FH (university of applied sciences) Isny, branch of computer sciences

additional qualification

since 06.2005

LPI Certification Level 1, Linux Professionals Institute

practice semester

10.2006-03.2007

SUSE Linux Products GmbH, Research & Development, Nuremberg

117

E Media

The printed version of this thesis, delivered the 11th of July in 2007, contains a data

Compact Disc (CD). This CD contains three directories:

• The directory source_code contains the complete code of the openSUSE

Build Service. The relevant subdirectories are:

– buildservice/src/frontend/(app)

– buildservice/src/webclient/(app)

– buildservice/src/common/lib/activexml/

– tools/download-stats/

• The directory thesis_source contains the LATEX source code of this thesis.

• The directory thesis_pdf contains the final PDF version of this thesis.

118

F Glossary

Ajax

Asynchronous Javascript and XML is a concept for data transmission between

clients and servers.

API

Application programmable interface.

chroot

A chroot on Linux/Unix operating systems is an operation that changes the

root director. This provides a convenient way to sandbox an untrusted,

untested or otherwise dangerous program.

Compile Farm

A set of networked computers, whose sole job it is to compile source code to

binaries.

Cron

Cron is a time-based scheduling service in Unix and Unix-like operating sys-

tems. A cronjob is a scheduled task in cron.

CRUD

Create, read, update and delete - the most common actions with data records.

Curl

Curl is a command line tool for transferring files with URL syntax, supporting

FTP, FTPS, HTTP, HTTPS and many more. The main purpose and use for

curl is to automate unattended file transfers or sequences of operations.

119

Glossary 120

DBMS

Database management system.

DDL

Data Definition Language - a subset of SQL.

DEB

The Debian software package format used by Debian Linux, Ubuntu and other

distributions.

DOM

Document Object Model is a way to refer to XML or HTML elements as

objects.

DQL

Data Query Language - a subset of SQL.

DRY

Abbreviation for “Don’t repeat yourself”, a main principle for Ruby on Rails.

Fixture

Fixtures is another word for ‘sample data’ in the context of automated Ruby

on Rails tests. Fixtures allow to populate the testing database with predefined

data before the tests run.

GET

The HTTP GET method requests data over the HTTP protocol by specifying

the ressource via an URL.

GUI

Graphical User Interface.

HTTP

Hyper Text Transfer Protocol.

120

Glossary 121

iChain

Novell iChain is a Web-based federated single sign-on solution that provides

simplified yet secure access to resources without the need to modify existing

web applications.

IDE

Integrated Development Environment.

Linux

Free and open source Unix-like computer operating system.

Metadata

Metata can be defined as data over data, data that describes other data.

MVC

Model-View-Control – an application design pattern.

NTA

Naturwissenschaftlich-Technische Akademie (academy of natural sciences).

Open Source Software

Open source software is computer software whose source code is available under

a license that permits users to use, change and improve the software, and to

redistribute it in modified or unmodified form.

ORM

Object-relational mapping.

Package

In the context of Linux, open source and the Build Service, a package contains

all that is necessary for a specific software application to be easy installed on

a computer running Linux. For details see page 22.

POST

The HTTP POST method sends commands and parameters over the HTTP

protocol in the request body.

121

Glossary 122

PUT

The HTTP PUT method sends data over the HTTP protocol in the request

body.

Qt

Qt is a cross-platform application development framework from Trolltech,

widely used for the development of GUI programs for Linux, Mac OS and

Windows.

R&D

Abbreviation for Research and Development (department).

REST

Representational State Transfer, an architectural style for designing web ser-

vices.

RoR

Ruby on Rails, a web application framework.

RPM

RPM Package Manager (originally Red Hat Package Manager) is a software

package management system for Linux used by many distributions like SUSE,

RedHat, Fedora, Mandrake and others.

Ruby

An object oriented scripting language.

SAX

Simple API for XML is a serial access parser API for XML.

SourceForge

A very popular Project hosting service for free and open source software.

SQL

Structure Query Language.

122

Glossary 123

SVN

Subversion is a popular revision control system.

URI

Uniform Resource Identifier.

URL

Uniform Resource Locator.

W3C

The World Wide Web Consortium (W3C) is the main international standards

organization for the World Wide Web (W3).

XHR

XMLHttpRequest (XHR) is an API that can be used by JavaScript to transfer

XML to and from a web server.

XML

Extensible Markup Language.

XSD

XML Schema Definition.

YAML

A human-readable data serialization format.

123

Index 124

Index

Numbers written in italic refer to the page where the corresponding entry is de-

scribed; numbers underlined refer to the definition; numbers in roman refer to the

pages where the entry is used.

Abstract, I

ActionPack, 18

ActiveRecord, 19

ActiveXML, 29, 47

Ajax, 14

API, 26

Architecture, 23

Backend, 25

Binary Packages, 23

Browsing, 6

Browsing Interface, 30

Build Service, 22

Caching, 63

Capistrano, 65

CD, 118

Clients, 27

Command line client, 28

Conclusion, 71

Controllers, 46

Credits, II

Cron, 66

Curriculum, 117

DBMS, 81

Deployment, 65

Design, 38

Disambiguation, 22

Document structure, 3

Download Statistics, 32

Editor, 11

Frontend, 26

Hardware, 11

IDE, 11

Implementation, 46

Initial Situation, 30

Introduction, 1

IntTools Team, 9

KDE, II

Latex, II

Media, 118

Metadata, 4

Migrations, 47

Motivation, 31

MVC, 13

MySQL, 21

Novell, 8

Objectives, 31

openSUSE Project, 9

osc, 28

Outlook, 72

Packages, 22

Performance, 62

Problem description, 2

Projects, 22

Purpose, 2

Rating, 31

Repository, 23

REST, 12

Rich client, 28

Ruby, 16

Ruby on Rails, 17

Runtime Experience, 62

Specification, 30

Statistics, 6

Statutory declaration, II

Stream Parser, 62

Subversion, 11

SUSE, 8

SVN, 11

Technical Preconditions, 37

Technical Solution, 30

Technologies, 11

Testing, 67

Tools, 11

Use Case Analyses, 32

Validation, 50

Vim, 11

Web Application, 80

Web Service, 80

Webclient, 27

Working environment, 8

XML, 79

124

	Abstract
	Annotations
	1 Introduction
	2 Theoretical Basics
	2.1 Metadata
	2.2 Statistics
	2.3 Browsing

	3 Working Environment
	3.1 Company, Team and Project
	3.2 Used Tools and Technologies
	3.2.1 Hardware
	3.2.2 Vim
	3.2.3 Subversion
	3.2.4 REST
	3.2.5 MVC
	3.2.6 Ajax
	3.2.7 Ruby
	3.2.8 Ruby on Rails
	3.2.9 MySQL

	3.3 Build Service -- A Technical Overview
	3.3.1 Disambiguation
	3.3.1.1 Packages
	3.3.1.2 Projects
	3.3.1.3 Binary Packages
	3.3.1.4 Repositories

	3.3.2 Architecture
	3.3.2.1 Backend
	3.3.2.2 Frontend / API
	3.3.2.3 Clients

	3.3.3 ActiveXML

	4 Build Service Browsing Interface
	4.1 Specification
	4.1.1 Initial Situation
	4.1.2 Motivation
	4.1.3 Objectives
	4.1.4 Use Case Analyses
	4.1.4.1 Latest Added / Updated Packages
	4.1.4.2 Package and Project Rating
	4.1.4.3 Most Downloaded Packages
	4.1.4.4 Most Active Packages / Projects

	4.1.5 Technical Preconditions

	4.2 Design
	4.2.1 Newest Packages and Projects
	4.2.2 Latest Updated Packages and Projects
	4.2.3 Package and Project Rating
	4.2.4 Activity Statistics of Packages and Projects
	4.2.5 Download Statistics of Packages and Projects
	4.2.5.1 The openSUSE Download Redirector
	4.2.5.2 Transmission of Download Counters

	4.3 Implementation
	4.3.1 Common Aspects
	4.3.1.1 Controllers
	4.3.1.2 Database Migrations
	4.3.1.3 ActiveXML Models
	4.3.1.4 Web Client Integration
	4.3.1.5 Read-Only Pages for Projects and Packages
	4.3.1.6 Separate Page for more Statistics
	4.3.1.7 XML Validation

	4.3.2 Newest Packages and Projects
	4.3.3 Latest Updated Packages and Projects
	4.3.4 Package and Project Rating
	4.3.5 Activity Statistics of Packages and Projects
	4.3.5.1 Activity of Packages
	4.3.5.2 Activity of Projects

	4.3.6 Download Statistics of Packages and Projects
	4.3.6.1 Generating Download Statistics XML File
	4.3.6.2 Import of the Download Counters

	5 Runtime Experience
	5.1 Performance
	5.1.1 XML Stream Parser for Download Statistics Import
	5.1.2 Caching Frontend Output

	5.2 Deployment
	5.2.1 Automated Deployment with Capistrano
	5.2.2 Download Statistics Import via Cronjob

	5.3 Testing
	5.3.1 Rails Testing Framework
	5.3.2 Implemented Tests

	6 Conclusion and Outlook
	List of Figures
	List of Tables
	List of Listings
	Appendix
	A Technologies
	A.1 XML
	A.2 Web Applications
	A.3 Web Services
	A.4 DBMS

	B Listings
	C Bibliography
	D Curriculum vitae
	E Media
	F Glossary
	Index

